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4 CONTENTS

Abstract

This master thesis consists of a theoretical discussion on univariate and bivariate extreme value

statistics along with an application to twin data. We �rst discuss the fundamental conver-

gence results from extreme value theory, which we use to construct the traditional maximum

likelihood estimators of the extreme value index. In order to put our work into the proper

framework, attention is paid to the three classes of extreme value distributions situated within

the max domain of attraction of the generalized extreme value distribution. Special attention

is given to the class of Pareto type distributions, since the methodology of how to construct

estimators in the multivariate setting resembles the methodology used to construct estima-

tors within the class of Pareto-type distributions. For the class of Pareto-type distributions

we propose an estimator of the extreme value index and an estimator for the second order

parameter. For both of these estimators we establish the asymptotic normality.

In the multivariate setting we start by discussing the transformation of the margins to stan-

dard Fréchet distributions and the fundamental convergence results. We discuss the domain of

attraction to the bivariate extreme value distribution and asymptotic dependence and asymp-

totic independence. We discuss furthermore the exponent measure, the spectral measure,

Pickands dependence function, the dependence measures χ and χ̄, and �nally the coe�cient

of tail dependence. The interpretations of these measures are discussed and we show how they

are all connected. For the coe�cient of tail dependence we introduce a functional estimator,

for which we show how it can be bias corrected. This bias correction requires estimation of

the second order parameter τ , so we propose two estimators that can be used to estimate this

second order parameter. The consistency of the estimators for the second order parameter are

established. We examine the �nite sample size behaviour of our estimator for the coe�cient

of tail dependence, the estimators of the second order condition and estimators of χ and χ̄
using simulations.

The twin data we consider is from the older cohort of the Finnish Twin Cohort Study. For this

data we make a full univariate data analysis and estimate the coe�cient of tail dependence,

the second order parameter τ , and the measures χ and χ̄ for age and sex de�ned subsets of

the data.

Throughout the thesis, results that are from the literature are stated with a reference, while

results that are our own are not stated with a reference.
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Chapter 1

Preliminaries

This chapter serves to give a short introduction to some of the basic concepts in univariate

extreme value statistics. First we will introduce a convergence result which is the foundation

of univariate extreme value statistics. It states what form the limiting distribution of a nor-

malized maximum will follow, if it exists. We will then describe shortly two of the classes of

extreme value distributions, known as the Gumbel and extremal Weibull families, respectively.

Finally, we discuss some simple ways in which the extreme value index can be estimated in

practice.

1.1 Classical convergence result

In the following we will consider a sample {Xi, 1 ≤ i ≤ n} of independent and identically

distributed (i.i.d.) random variables having a distribution function FX . In extreme value

statistics we consider either the maximum or the minimum of the random sample, where the

maximum is given by

Xn,n := max{X1, X2, . . . , Xn}.

We will try to describe the statistical behaviour of this maximum, but it is easy to transform

any result we obtain for the maximum to the minimum because of the relation

X1,n := min{X1, X2, . . . , Xn} = −max{−X1,−X2, . . . ,−Xn}. (1.1)

Because of the i.i.d. nature of X1, . . . , Xn, the distribution of Xn,n can be derived exactly for

all possible values of n as follows

FXn,n(x) = P (Xn,n ≤ x)

= P (X1 ≤ x,X2 ≤ x, . . .Xn ≤ x)

= P (X1 ≤ x)P (X2 ≤ x) · · ·P (Xn ≤ x)

= (FX(x))n .

For practical purposes this relation does not help much though, since the distribution of

FX is usually unknown. One could try to estimate the distribution of FX and use this to

estimate FXn,n , but small deviations in the estimation of FX can lead to large deviations in

the estimation of FXn,n . Instead we will look for approximate families of FXn,n which for large

5



6 Classical convergence result

n can be estimated by use of the extreme data only.

We look at the behaviour of FXn,n as n approaches in�nity. If we denote the right endpoint

of FX as x∗, which means that x∗ := inf{x : FX(x) = 1}, then for any x < x∗ we have that

Fn
X(x) → 0 as n→ ∞. So the distribution of Xn,n is degenerate in the limit. This degeneracy

can possibly be avoided if we look at an appropriate normalization, for instance

Xn,n − bn
an

where (bn)
∞
n=1 is a sequence of constants and (an)

∞
n=1 is a sequence of positive constants.

Appropriate choices of (an)
∞
n=1 and (bn)

∞
n=1 can stabilize the location and scale of

Xn,n−bn
an

. It

can be shown that the entire range of limit distributions of
Xn,n−bn

an
, if they exist, is given by

Theorem 1.1.1.

Theorem 1.1.1. (Fisher and Tippet, 1928; Gnedenko, 1943) Let X1, . . . , Xn be i.i.d. random

variables with distribution function FX . If there exists sequences of constants (bn)
∞
n=1 and

positive constants (an)
∞
n=1 such that

lim
n→∞

P

(
Xn,n − bn

an
≤ x

)
= lim

n→∞
Fn
X (anx+ bn) = G(x) (1.2)

at all continuity points of G, where G is a non degenerate distribution function, then G should

be of the following type

Gγ(x) = exp
(
−(1 + γx)

− 1
γ

)
, 1 + γx > 0, (1.3)

with γ real and where for γ = 0 the right-hand side is interpreted as exp (−e−x).

This family of distribution functions is known as the generalized extreme value (GEV) family,

for which the parameter γ is the shape parameter. This parameter is also called the extreme

value index and it describes the tail behaviour of FX , with larger values indicating heavier

tails. The family consists of three classes known as the Gumbel, Fréchet and extremal Weibull

families which correspond to γ = 0, γ > 0 and γ < 0 respectively. The Fréchet class is also

known as the class of Pareto-type models. If the distribution FX satis�es (1.2)-(1.3) then we

say that it belongs to the max domain of attraction of Gγ , denoted FX ∈ D(Gγ).
The result in Theorem 1.1.1 has some equivalent formulations. Some of these formulations

are based on the tail quantile function U(y) := Q
(
1− 1

y

)
, y > 1, where Q is the quantile

function, de�ned as Q(p) := inf{x : FX(x) ≥ p}, p ∈ (0, 1). These equivalent formulations
are stated in Theorem 1.1.2.

Theorem 1.1.2. (Gnedenko, 1943; de Haan and Ferreira, 2006) Let X1, . . . , Xn be i.i.d.

random variables with distribution function FX . For γ ∈ R the following statements are

equivalent:

(i) There exists sequences of real constants (bn)
∞
n=1 and positive real constants (an)

∞
n=1 such

that

lim
n→∞

Fn
X (anx+ bn) = Gγ(x) = exp

(
−(1 + γx)

− 1
γ

)
, (1.4)

for all x with 1 + γx > 0.
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(ii) There is a positive function a such that for all x > 0,

lim
t→∞

U(tx)− U(t)

a(t)
=
xγ − 1

γ
, (1.5)

where for γ = 0 the right-hand side is interpreted as log x.

(iii) There is a positive function a such that

lim
t→∞

t(1− FX(a(t)x+ U(t))) = (1 + γx)
− 1

γ , (1.6)

for all x with 1 + γx > 0.

(iv) There exists a positive function f such that

lim
t↑x∗

1− FX(t+ xf(t))

1− FX(t)
= (1 + γx)

− 1
γ (1.7)

for all x for which 1 + γx > 0.

Moreover, (1.4) holds with bn := U(n) and an := a(n). Also (1.7) holds with f(t) =

a
(

1
1−FX(t)

)
.

As seen in Theorem 1.1.2 the choice of the normalizing constant bn does not depend on the

sign of γ and can be shown to always work, if we choose bn = U(n). The choice of an depends

on whether we are dealing with γ positive, negative or equal to zero, so we will address this

in the sections dedicated to the corresponding classes.

In order to discuss the extremal Weibull and Fréchet classes, we need the concept of a slowly

varying function. Slowly varying functions are special cases of regularly varying functions, so

we will give the de�nition of what it means to be of regular variation. The regularly varying

functions will also be needed later in this thesis.

De�nition 1.1.3. (Beirlant et al., 2004, De�nition 2.1) Let f be an ultimately positive and

measurable function on R+. We say that f is regularly varying at in�nity if there exists a real

constant ρ for which

lim
x→∞

f(λx)

f(x)
= λρ for all λ > 0.

We write f ∈ Rρ and we call ρ the the index of regular variation. In the case ρ = 0, the
function will be called slowly varying or of slow variation. We will reserve the symbol l for
such functions. The class of all regularly varying functions is denoted by R.

The next two sections will be dedicated to the Gumbel and the extremal Weibull class, while

the Fréchet class which is of more importance for this thesis, will be discussed in the next

chapter.



8 The Gumbel class

1.2 The Gumbel class

The Gumbel class corresponds with the max domain of attraction of Gγ with γ = 0. The

following proposition provides a characterization of the distributions that belong to this class.

Proposition 1.2.1. (Gnedenko, 1943) Let X be a random variable with distribution function

FX . Then we have for x∗ �nite or in�nite and a, f suitable positive functions, that

FX ∈ D(G0) ⇔ lim
t↑x∗

1− FX(t+ xf(t))

1− FX(t)
= exp(−x), x ∈ R (1.8)

⇔ lim
t→∞

U(tx)− U(t)

a(t)
= log(x), x > 0. (1.9)

For the Fréchet and extremal Weibull classes it is easy to show that the distributions belonging

to those classes satisfy (1.5), but this is not the case for the Gumbel class. This also means

that determining the scaling parameter an for the distributions in the Gumbel class is more

di�cult. It can however be determined by the formula

an = n

∫ x∗

U(n)
(1− FX(y)) dy.

We will not derive this formula, but simply take it as a fact. For details we refer to de Haan

and Ferreira (2006), Corollary 1.2.4.

Example 1.2.2. If we want to determine the parameters an and bn for the exp(1) distribution
with distribution function FX(x) = 1−exp(−x), x > 0, then we must �rst �nd the tail quantile
distribution of the exponential distribution. The distribution function has quantile function

Q(p) = − ln(1− p), 0 < p < 1. So

U(x) = Q

(
1− 1

x

)
= log(x), x > 1.

This means bn can be chosen as

bn = U(n) = log(n)

and an can be chosen as

an = n

∫ ∞

log(n)
exp(−x)dx = n exp (− log(n)) = 1.

Since we know the constants an and bn we can also show that the exponential distribution

belongs to the max domain of attraction of the Gumbel class. Indeed

P

(
Xn,n − bn

an
≤ x

)
= Fn

X(anx+ bn)

= Fn
X (x+ log(n))

= (1− exp (−x− log(n)))n

=

(
1− exp(−x)

n

)n

→ exp (− exp (−x)) for n→ ∞.
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The convergence of Fn
X (anx+ bn) to G(x) is shown in Figure 1.1. The solid line is G(x), the

dashed line is for n = 2, the dotted line is for n = 5 and the dashed dotted line is for n = 10.
It is clearly seen that when n grows then Fn

X (anx+ bn) converges pointwise to G(x).

−2 −1 0 1 2 3 4 5

0.
0

0.
2
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x

p

Figure 1.1: The convergence of Fn
X (anx+ bn) to G(x) for the standard exponential distribu-

tion.

�

1.3 The extremal Weibull class

The extremal Weibull class corresponds with the max domain of attraction of Gγ with γ < 0.
As was the case for the Gumbel class, we have a proposition which provides a characterization

of the distributions that belong to this class.

Proposition 1.3.1. (Gnedenko, 1943) Let X be a random variable with distribution function

FX . Then we have for x∗ �nite that

FX ∈ D(Gγ), γ < 0 ⇔ 1− FX

(
x∗ −

1

x

)
= x

1
γ lFX

(x), x > 0 (1.10)

⇔ U(x) = x∗ − xγlU (x), x > 1, (1.11)

where lU (x) and lFX
(x) are slowly varying at in�nity.
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From (1.11) it is easily seen that (1.5) is satis�ed when t tends to in�nity. Indeed

U(tx)− U(t)

a(t)
=
x∗ − (tx)γlU (tx)− (x∗ − tγlU (t))

a(t)

=
tγlU (t)

a(t)

(
1− xγ

lU (tx)

lU (t)

)
∼ −γ t

γlU (t)

a(t)

xγ − 1

γ

∼ xγ − 1

γ

if we choose a(t) such that a(t)
x∗−U(t) → −γ. This indicates that a good choice of an would be

an = a(n) = −γ(x∗ − U(n)) = −γnγlU (n).

Example 1.3.2. The reversed Burr distribution has distribution function given by

FX(x) = 1−
(

ζ

ζ + (1− x)−δ

)λ

, x < 1;λ, ζ, δ > 0

and so the quantile function is

Q(p) = 1− ζ−
1
δ

(
(1− p)−

1
λ − 1

)− 1
δ
, 0 < p < 1.

So we �nd the tail quantile function U to be

U(x) = Q

(
1− 1

x

)
= 1− ζ−

1
δ

(
x

1
λ − 1

)− 1
δ
, x > 1.

The distribution belongs to the max domain of attraction of Gγ with γ = − 1
λδ . If we consider

the reversed Burr distribution with parameters λ = ζ = δ = 1, then we can choose the

normalizing constant bn as

bn = U(n) = 1− (n− 1)−1 .

Since x∗ = 1 and γ = −1 we can choose the normalizing constant an as

an = 1− U(n) = (n− 1)−1 .

With these normalizing constants we can show that the reversed Burr distribution with pa-

rameters λ = ζ = δ = 1 belongs to the max domain of attraction of the Weibull class. Indeed

P

(
Xn,n − bn

an
≤ x

)
= Fn

X (anx+ bn)

= Fn
X

(
(x− 1)(n− 1)−1 + 1

)
=

1− 1

1 +
(
n−1
1−x

)
n

=

(
1− 1− x

n− x

)n

→ exp(−(1− x)) for n→ ∞.
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The convergence of the reversed Burr distribution to its limit is illustrated in Figure 1.2. The

solid line is G(x), the dashed line is for n = 2, the dotted line is for n = 5, while the dashed
dotted line is for n = 10. It is clearly seen that when n grows, then Fn

X (anx+ bn) converges
pointwise to G(x).
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Figure 1.2: The convergence of Fn
X (anx+ bn) to G(x) for the reversed Burr distribution with

λ = ζ = δ = 1.

�

1.4 Estimation of the extreme value index in practice

In practise we do not know the constants an and bn, so Theorem 1.1.1 is not very usefull if

we want to estimate γ. However, if we for some �nite n ∈ N have that

P

(
Xn,n − bn

an
≤ x

)
≈ exp

(
−(1 + γx)

− 1
γ

)
, 1 + γx > 0,

then

P (Xn,n ≤ z) ≈ exp

(
−
(
1 + γ

z − bn
an

)− 1
γ

)
, 1 + γ

z − bn
an

> 0,

where z = bn + anx. If we let µ = bn and σ = an, then we are left with the model

P (Xn,n ≤ z) ≈ exp

(
−
(
1 + γ

z − µ

σ

)− 1
γ

)
, 1 + γ

z − µ

σ
> 0. (1.12)

With this model we can easily obtain maximum likelihood estimates of µ, σ and γ. To do

this, we divide the data into m blocks and de�ne z1, . . . , zm to be the block maxima of the
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m blocks. Under the assumption that Z1, . . . , Zm are independent variables having the GEV

distribution we get from (1.12) that the log likelihood is given by

logL(µ, σ, γ) = −m log σ −
(
1 +

1

γ

) m∑
i=1

log

(
1 + γ

zi − µ

σ

)
−

m∑
i=1

(
1 + γ

zi − µ

σ

)− 1
γ

.

(1.13)

The maximum likelihood estimates are then obtained by maximizing (1.13) with respect to

µ, σ and γ.
Another popular model is the peaks over threshold model (POT). This model can be derived

using Theorem 1.1.2. If we assume that (1.4) is satis�ed, then there exists a positive function

f such that

lim
t↑x∗

P

(
X − t

f(t)
> x

∣∣∣∣X > t

)
= lim

t↑x∗

1− FX(t+ f(t)x)

1− FX(t)
, x > 0

= (1 + γx)
− 1

γ , 1 + γx > 0.

For t large, we thus have

P

(
X − t

f(t)
> x

∣∣∣∣X > t

)
≈ (1 + γx)

− 1
γ , x > 0 and 1 + γx > 0,

which reduces to

P (X − t > z|X > t) ≈
(
1 + γ

z

σ

)− 1
γ
, z > 0 and 1 + γ

z

σ
> 0, (1.14)

if we set z = f(t)x and f(t) = σ. From this we are able to get maximum likelihood estimates

of γ and σ when we choose a threshold t. If we let z1, . . . , zk denote the k observations which

are greater than the threshold t, then we obtain the log likelihood function from (1.14). The

log likelihood is given by

logL(σ, γ) = −k log σ −
(
1 +

1

γ

) k∑
i=1

log
(
1 + γ

zi
σ

)
. (1.15)

The maximum likelihood estimates are obtained by maximizing (1.15) with respect to γ and

σ.
Using maximum likelihood with block maxima or peaks over threshold is an easy way to

estimate γ. There are many other ways to estimate γ but we will not go into detail about

them. Among the methods of estimating γ for the generalized extreme value distribution are

the Pickands estimator (Pickands, 1975), the moment estimator (Dekkers et al., 1989), and

the probability-weighted moment estimator (Hosking et al., 1985).

When considering the POT model we have to choose the threshold ourselves. There are several

ways to do this, but we will only discuss how to choose the threshold using a mean residual

life plot. An introduction to mean residual life plots requires a small lemma about a property

of the generalized Pareto distribution.

Lemma 1.4.1. If X ∼ GPD(σ, γ), then X − u|X > u ∼ GPD(σ + γu, γ).
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Proof. If X ∼ GPD(σ, γ), then FX(x) = 1−
(
1 + γ x

σ

)− 1
γ . From this we get that

P (X − u > x|X > u) =
P (X > u+ x,X > u)

P (X > u)
, x > 0

=
1− FX(u+ x)

1− FX(u)

=

(
1 + γ x+u

σ

1 + γ u
σ

)− 1
γ

=

(
1 + γ

x

σ + γu

)− 1
γ

,

which implies that X − u|X > u ∼ GPD(σ + γu, γ).

If X ∼ GPD(σ, γ) with γ < 1, then

E(X) =
σ

1− γ
,

while E(X) = ∞ for γ ≥ 1. So assuming γ < 1, it follows from Lemma 1.4.1 that

E(X − u|X > u) =
σ + γu

1− γ
, u > 0,

and hence the mean excess function is linear in u. The mean residual life plot consists of the

points {(
u,

1

nu

nu∑
i=1

(
x(i) − u

))
: u < xmax

}
,

where x(1), . . . , x(nu) consists of the nu observations that exceeds u, and xmax is the largest

observation. If the GPD approximation is good at threshold u, then it should also be good at

a higher threshold, so the mean excess function should be approximately linear in u beyond a

good threshold.



Chapter 2

Pareto-type distributions

In this chapter we give an introduction to the Fréchet class. We start by considering the domain

of attraction of this class, similar to the discussion of the Gumbel and extremal Weibull classes.

Next we turn our attention to the estimation of the extreme value index γ for Pareto-type

distributions which satisfy a second order condition. We prove asymptotic normality for a

statistic proposed in Goegebeur et al. (2010) and use this to construct a class of estimators

for γ. From this class of estimators we construct speci�c estimators using kernel functions.

We end this chapter with a presentation of an estimator of the second order parameter. The

asymptotic normality of the latter is established under a third order condition.

2.1 Domain of attraction

The class of Pareto-type models corresponds with the max domain of attraction of Gγ with

γ > 0. The following proposition provides a characterization of the distributions that belong

to this class.

Proposition 2.1.1. (Gnedenko, 1943) Let X be a random variable with distribution function

FX . Then we have for x∗ in�nite that

FX ∈ D(Gγ), γ > 0 ⇔ 1− FX(x) = x
− 1

γ lFX
(x), x > 0 (2.1)

⇔ U(x) = xγlU (x), x > 1, (2.2)

where lU (x) and lFX
(x) are slowly varying at in�nity.

Tail quantile functions of the form (2.2) can be shown to satisfy (1.5) if x tends to in�nity, in

the following way

U(tx)− U(t)

a(t)
=

(tx)γlU (tx)− tγlU (t)

a(t)

=
lU (t)t

γ

a(t)

(
lU (tx)

lU (t)
xγ − 1

)
∼ xγ − 1

γ

14
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when choosing a(t) = γtγlU (t) = γU(t). More generally a(t) can also be chosen as a function

satisfying

lim
t→∞

a(t)

U(t)
= γ.

This brings us to how an can be chosen as a normalizing constant. If we choose an = a(n) =
γU(n) then we can use this constant as one of the normalizing constants for the Fréchet class.

There exists full equivalence between the Pareto-type models and the extremal Weibull class.

If we let X be a random variable with FX belonging to the max domain of attraction of the

extremal Weibull class with x∗ as the right endpoint, and put Y := (x∗ −X)−1, then the

Weibull class and the Pareto-type models are linked through the identi�cation

FX ∈ D (Gγ) , γ < 0 ⇔ FY ∈ D (Gγ) , γ > 0.

The equivalence follows easily because

1− FX

(
x∗ −

1

x

)
= P

(
X > x∗ −

1

x

)
= P

(
(x∗ −X)−1 > x

)
= 1− FY (x).

Example 2.1.2. The Fréchet distribution has distribution function given by

FX(x) = exp
(
−x−α

)
, x > 0, α > 0.

This means it has quantile function

Q(p) = (− log p)−
1
α , 0 < p < 1,

and hence the tail quantile function is

U(x) =

(
− log

(
1− 1

x

))− 1
α

, x > 1.

The Fréchet distribution has γ = 1
α and the normalizing constant an can hence be chosen as

an = γU(n) =
1

α

(
− log

(
1− 1

n

))− 1
α

.

The normalizing constant bn can be chosen as

bn = U(n) =

(
− log

(
1− 1

n

))− 1
α

.

Concerning the Fréchet distribution with α = 1 we see that

P

(
Xn,n − bn

an
≤ x

)
= Fn

X (anx+ bn)

= Fn
X

((
− log

(
1− 1

n

))−1

x+

(
− log

(
1− 1

n

))−1
)

=

[(
1− 1

n

)n] 1
1+x

→ exp
(
−(1 + x)−1

)
for n→ ∞.
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The convergence of the Fréchet distribution to its limit is illustrated in Figure 2.1. The solid

line is G(x), the dashed line is for n = 2, the dotted line is for n = 5, while the dashed dotted

line is for n = 10. It is clearly seen that when n grows, then Fn
X (anx+ bn) converges pointwise

to G(x).

−1 0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

x

p

Figure 2.1: The convergence of Fn
X (anx+ bn) to G(x) for the Fréchet distribution with α = 1.

�

Next we give two examples of distributions that are of Pareto-type.

Example 2.1.3. The Burr distribution has a distribution function given by

FX(x) = 1−
(

ζ

ζ + xδ

)λ

, x > 0, λ, ζ, δ > 0.

In order to verify that the Burr distribution is of Pareto-type we start with

1− FX(x) =

(
ζ

ζ + xδ

)λ

= x−δλ

(
ζ

ζx−δ + 1

)λ

.

It is easily seen that g(x) :=
(

ζ
ζx−δ+1

)λ
is slowly varying at in�nity since it converges to a

constant when x→ ∞. So the Burr distribution is of Pareto-type with γ = 1
λδ .

a �
Example 2.1.4. The absolute T distribution has distribution function given by

FX(x) =
Γ
(
n+1
2

)
√
nπΓ

(
n
2

) ∫ x

−x

(
1 +

t2

n

)−n+1
2

dt, x > 0, n ∈ N.
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In order to verify that the absolute T distribution is of Pareto-type we start with

1− FX(x) = 2
Γ
(
n+1
2

)
√
nπΓ

(
n
2

) ∫ ∞

x

(
1 +

t2

n

)−n+1
2

dt

= 2
Γ
(
n+1
2

)
√
nπΓ

(
n
2

) ∫ ∞

x

(
t2

n

)−n+1
2 ( n

t2
+ 1
)−n+1

2
dt

= K

∫ ∞

x
t−n−1

(
nt−2 + 1

)−n+1
2 dt,

where K := 2
n

n
2 Γ(n+1

2 )
√
πΓ(n

2 )
. We are concerned with large values of x, so we make a Taylor series

expansion of (1 + x)−
n+1
2 around 0, which yields

(
nt−2 + 1

)−n+1
2 =1− n+ 1

2
nt−2 +

1

2

n+ 1

2

(
n+ 1

2
+ 1

)
n2t−4

− 1

6

n+ 1

2

(
n+ 1

2
+ 1

)(
n+ 1

2
+ 2

)(
1 + t̃

)−n+1
2

−3
n3t−6,

where t̃ is between 0 and n
t2
. From this it follows that

1− FX(x) =K

(∫ ∞

x
t−n−1dt− n(n+ 1)

2

∫ ∞

x
t−n−3dt

+
n2(n+ 1)(n+ 3)

8

∫ ∞

x
t−n−5dt

− n3(n+ 1)(n+ 3)(n+ 5)

48

∫ ∞

x
t−n−1

(
1 + t̃

)−n+1
2

−3
t−6dt

)
.

Since
(
1 + t̃

)−n+1
2

−3 ≤ 1 it follows that
∫∞
x t−n−1

(
1 + t̃

)−n+1
2

−3
t−6dt ≤

∫∞
x t−n−7dt, and

hence

1− FX(x) =K

(
x−n

n
− n(n+ 1)

2(n+ 2)
x−n−2 +

n2(n+ 1)(n+ 3)

8(n+ 4)
x−n−4 +O

(
x−n−6

))
=x−nC0

(
1− n2(n+ 1)

2(n+ 2)
x−2 +

n3(n+ 1)(n+ 3)

8(n+ 4)
x−4 +O

(
x−6

))
, (2.3)

where C0 :=
K
n . Since the function g(x) := C0

(
1− n2(n+1)

2(n+2) x
−2 + n3(n+1)(n+3)

8(n+4) x−4 +O
(
x−6

))
converges to a constant, when x→ ∞, the function is slowly varying at in�nity and hence the

absolute T distribution is of Pareto-type with γ = 1
n .

a �

2.2 Estimation of the extreme value index

In the analysis of Pareto-type models, estimation of γ plays a central role. The asymptotic

distribution of the estimator of γ is usually established under the following second order

condition on the tail behaviour.
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Assumption 2.2.1 (Second order condition). There exists a positive real parameter γ, a

negative real parameter ρ and a function b with b(t) → 0 for t→ ∞, of constant sign for large

values of t, such that

lim
t→∞

logU(tx)− logU(t)− γ log x

b(t)
=
xρ − 1

ρ
, ∀x > 0.

The second order condition implies that |b| is regularly varying with index ρ (Geluk and Haan,

1987), so the parameter ρ determines the rate of convergence for logU(tx) − logU(t) to its

limit γ log x, when t tends to in�nity. If ρ is close to zero then the convergence is slow and

the estimation of tail parameters is practically di�cult.

We will now verify that the Burr distribution and the absolute T distribution satisfy the second

order condition. That they are of Pareto-type was veri�ed in Example 2.1.3 and Example 2.1.4

respectively.

Example 2.2.2. In order to verify that the Burr distribution satis�es the second order condi-

tion we need to �nd its tail quantile function. The quantile function of the Burr distribution

is easily found by inverting the distribution function and it is given by

Q(p) = ζ
1
δ

(
(1− p)−

1
λ − 1

) 1
δ
, 0 < p < 1.

From this we obtain the tail quantile function

U(x) = Q

(
1− 1

x

)
= xγζ

1
δ

(
1− x−

1
λ

) 1
δ
, x > 1.

We start with the expression

logU(tx)− logU(t)− γ log x =
1

δ
log
(
1− (xt)−

1
λ

)
− 1

δ
log
(
1− t−

1
λ

)
.

If we make a Taylor series expansion of log(1− x) around 0, we obtain

logU(tx)− logU(t)− γ log x =
1

δ

(
−(tx)−

1
λ − 1

2
(tx)−

2
λ

)
− 1

δ

(
−t−

1
λ − 1

2
t−

2
λ

)
+O

(
t−

3
λ

)
=

1
λδ t

− 1
λ

(
x−

1
λ − 1

)
− 1

λ

+

1
λδ t

− 2
λ

(
x−

2
λ − 1

)
− 2

λ

+O
(
t−

3
λ

)
(2.4)

=
γt−

1
λ

(
x−

1
λ − 1

)
− 1

λ

+O
(
t−

2
λ

)
. (2.5)

From (2.5) we see that if we choose ρ = − 1
λ and b(t) = γtρ, then the Burr distribution satis�es

the second order condition. More generally b(t) can be chosen such that b(t) = γtρ(1 + o(1)).
a �

Example 2.2.3. From (2.3) we get for the absolue T distribution that

1− FX(x) = x
− 1

γC0

(
1− C1x

−2 + C2x
−4 +O

(
x−6

))
,
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where C1 := n2(n+1)
2(n+2) and C2 := n3(n+1)(n+3)

8(n+4) . In order to �nd the tail quantile function we

have to invert
1

y
= x

− 1
γC0

(
1− C1x

−2 + C2x
−4 +O

(
x−6

))
.

From this we �nd

x = Cγ
0 y

γ
(
1− C1x

−2 + C2x
−4 +O

(
x−6

))γ
.

If we make a Taylor series expansion of (1− x)γ around x = 0, we obtain

x =Cγ
0 y

γ

(
1− γ

(
C1x

−2 − C2x
−4 +O

(
x−6

))
+

1

2
γ(γ − 1)

(
C1x

−2 − C2x
−4 +O

(
x−6

))2
+O

(
x−6

))
=Cγ

0 y
γ

(
1− γC1C

−2γ
0 y−2γ

(
1− γC1x

−2 +

(
γC2 +

γ(γ − 1)

2
C2
1

)
x−4 +O

(
x−6

))−2

+

(
γC2 +

γ(γ − 1)

2
C2
1

)
x−4 +O

(
x−6

))
.

Now we make a Taylor series expansion of (1− x)−2 in which case we obtain

x =Cγ
0 y

γ

(
1− γC1C

−2γ
0 y−2γ

(
1 + 2γC1x

−2 +O
(
x−4

))
+

(
γC2 +

γ(γ − 1)

2
C2
1

)
x−4 +O

(
x−6

))
.

If we substitute the right hand side into the place of x, then it follows that

x =Cγ
0 y

γ

(
1− γC1C

−2γ
0 y−2γ

+

(
γC2 −

γ(3γ + 1)

2
C2
1

)
C−4γ
0 y−4γ +O

(
y−6γ

))
.

So the tail quantile function can be written as

U(x) = Cγ
0 x

γ
(
1−D1x

−2γ +D2x
−4γ +O(x−6γ)

)
,

where D1 := γC1C
−2γ
0 , and D2 :=

(
γC2 − γ(3γ+1)

2 C2
1

)
C−4γ
0 . We are now ready to verify that

the absolute T distribution satis�es the second order condition. We start with the expression

logU(xt)− logU(t)− γ log x = log
(
1−D1(xt)

−2γ +D2(xt)
−4γ +O(t−6γ)

)
− log

(
1−D1t

−2γ +D2t
−4γ +O(t−6γ)

)
.

By making a Taylor series expansion of log(1− x) around x = 0 we obtain

logU(xt)− logU(t)− γ log x =−D1(xt)
−2γ +D2(xt)

−4γ − 1

2

(
D1(xt)

−2γ −D2(xt)
−4γ
)2

+D1t
−2γ −D2t

−4γ +
1

2

(
D1t

−2γ −D2t
−4γ
)2

+O(t−6γ)

=−D1t
−2γ

(
x−2γ − 1

)
+

(
D2 −

1

2
D2

1

)
t−4γ

(
x−4γ − 1

)
+O(t−6γ) (2.6)

=−D1t
−2γ

(
x−2γ − 1

)
+O(t−4γ). (2.7)
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From (2.7) we see that if we choose ρ = −2γ and b(t) of the form b(t) = −ρD1t
ρ(1 + o(1)),

then the absolute T distribution satis�es the second order condition.

a �

We now return to the estimation of γ. The estimator of γ we will consider is based on a kernel

statistic with kernel function K. This statistic is given by

Tn,k(K) :=
1

k

k∑
j=1

K

(
j

k + 1

)
Zj , (2.8)

where Zj := j (logXn−j+1,n − logXn−j,n). This statistic will also serve as the basic building

block for the ρ estimator we propose in section 2.3. We need some conditions on the kernel

function, but �rst we introduce the following notation

µ(K) :=

∫ 1

0
K(u)du,

I1(K, ρ) :=

∫ 1

0
K(u)u−ρdu,

σ2(K) :=

∫ 1

0
K2(u)du.

With this notation the kernel function must satisfy

Assumption 2.2.4. Let K be a function de�ned on (0, 1) such that

(i) K(t) = 1
t

∫ t
0 u(v)dv for some function u satisfying

∣∣∣∣(k + 1)
∫ j

k+1
j−1
k+1

u(t)dt

∣∣∣∣ ≤ f
(

j
k+1

)
for

some positive continuous and integrable function f de�ned on (0, 1),

(ii) σ2(K) <∞,

(iii) 1
k

∑k
j=1K

(
j

k+1

)
= µ(K) + o

(
1√
k

)
for k → ∞,

(iv) maxi∈1,...,k

∣∣∣K ( i
k+1

)∣∣∣ = o
(√

k
)
for k → ∞,

(v)
∫ 1
0 |K(u)|u|ρ|−1−εdu <∞ for some ε > 0.

Next we give an example of a kernel function which satis�es Assumption 2.2.4.

Example 2.2.5. An important special subset of kernel functions which satisfy Assumption

2.2.4 is the kernel K(t) := tτ (− log t)δ, where τ, δ ≥ 0 are tuning parameters. This class of

kernel functions has as important special cases the Hill kernel H := 1 corresponding to τ =
δ = 0, the power kernels Kτ (t) := tτ , τ > 0 and the log kernels Lδ(t) := (− log t)δ, δ > 0.

Lemma 2.2.6. The function K(t) := tτ (− log t)δ satis�es Assumption 2.2.4.

The proof of Lemma 2.2.6 can be found in Appendix 2.4.

a �
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With Assumption 2.2.1 and Assumption 2.2.4 we are able to establish the following result.

Theorem 2.2.7. Let X1, . . . , Xn be i.i.d. random variables according to a distribution sat-

isfying Assumption 2.2.1. If further Assumption 2.2.4 holds, then for k, n → ∞ such that
k
n → 0 we have

Tn,k(K)
D
= γµ(K) + γσ(K)

Nk(K)√
k

+ b
(n
k

)
I1(K, ρ) (1 + oP(1)) , (2.9)

where Nk(K) is asymptotically a standard normal random variable.

A proof of this theorem is given in Goegebeur et al. (2010), we will however give an alternative

proof of the result.

Proof of Theorem 2.2.7. Let U1,n ≤ . . . ≤ Un,n be order statistics from a random sample of

size n from the U(0, 1) distribution. By using the inverse probability integral transform we

�nd that

Xi,n
D
= Q (Ui,n)

D
= Q (1− Un−i+1,n)

= U

(
1

Un−i+1,n

)
.

Since the Xi are of Pareto-type it follows that

Xi,n
D
=

(
1

Un−i+1,n

)γ

lU

(
1

Un−i+1,n

)
.

From this we get

logXi,n
D
= −γ logUn−i+1,n + log lU

(
1

Un−i+1,n

)
.

Hence

logXn−j+1,n − logXn−k,n
D
= −γ log Uj,n

Uk+1,n
+ log

lU

(
Uk+1,n

Uj,n

1
Uk+1,n

)
lU

(
1

Uk+1,n

) .

Since
Uj,n

Uk+1,n

D
= Vj,k, where Vj,k is the j'th order statistic in a random sample of size k from

the U(0, 1) distribution, it follows that

logXn−j+1,n − logXn−k,n
D
= −γ log Vj,k + log

lU

(
1

Vj,k

1
Uk+1,n

)
lU

(
1

Uk+1,n

)
D
= −γ log (1− Vk−j+1,k) + log

lU

(
1

Vj,k

1
Uk+1,n

)
lU

(
1

Uk+1,n

) .

Using that the quantile function of the standard exponential distribution is Q(p) = − log(1−
p), 0 < p < 1, and denoting by E1,n ≤ . . . ≤ En,n the order statistics of a random sample of
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size n from the standard exponential distribution, we get using Assumption 2.2.1 and inspired

by Lemma 2.4.3, that

logXn−j+1,n − logXn−k,n
D
= γEk−j+1,k + b0

(
1

Uk+1,n

) ( 1
Vj,k

)ρ
− 1

ρ
+ b0

(
1

Uk+1,n

)
R̃n,k(j),

where R̃n,k(j) :=
logU

(
1

Uk+1,n

1
Vj,k

)
−logU

(
1

Uk+1,n

)
−γ log 1

Vj,k

b0

(
1

Uk+1,n

) −

(
1

Vj,k

)ρ

−1

ρ . Thus

Zj = j (logXn−j+1,n − logXn−j,n)

D
= j

γEk−j+1,k − γEk−j,k + b0

(
1

Uk+1,n

) ( 1
Vj,k

)ρ
−
(

1
Vj+1,k

)ρ
ρ

+ b0

(
1

Uk+1,n

)
Rn,k(j)

 ,

(2.10)

where Rn,k(j) := R̃n,k(j) − R̃n,k(j + 1), with the convention R̃n,k(k + 1) := 0 and with b0 a

function satisfying b0(t) ∼ b(t) for t → ∞. Using the Rényi representation (Rényi, 1953) we

can express each Ej,k as

{Ej,k}j=1,...,k

D
=

{
j∑

i=1

Ek−i+1

k − i+ 1

}
j=1,...,k

,

where the E1, . . . , Ek are independent random variables from a standard exponential distri-

bution. Hence

Ek−j+1,k − Ek−j,k
D
=

k−j+1∑
i=1

Ek−i+1

k − i+ 1
−

k−j∑
i=1

Ek−i+1

k − i+ 1

=
Ej

j
. (2.11)

Combining (2.10) and (2.11) we �nd that

Zj
D
= γEj + b0

(
1

Uk+1,n

)
j

(
1

Vj,k

)ρ
−
(

1
Vj+1,k

)ρ
ρ

+ b0

(
1

Uk+1,n

)
jRn,k(j).

Let Y1,k ≤ . . . ≤ Yk,k be order statistics of a random sample of size k from the standard strict

Pareto distribution. Then we have

1

Vj,k

D
=

1

1− Vk−j+1,k

D
= Yk−j+1,k.

Using this we get that

Zj
D
= γEj + b0 (Yn−k,n) j

Y ρ
k−j+1,k − Y ρ

k−j,k

ρ
+ b0 (Yn−k,n) jRn,k(j).
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Hence

Tn,k(K)
D
=
1

k

k∑
j=1

K

(
j

k + 1

)(
γEj + b0 (Yn−k,n) j

Y ρ
k−j+1,k − Y ρ

k−j,k

ρ
+ b0 (Yn−k,n) jRn,k(j)

)

=γ
1

k

k∑
j=1

K

(
j

k + 1

)
Ej + b0 (Yn−k,n)

1

k

k∑
j=1

K

(
j

k + 1

)
j
Y ρ
k−j+1,k − Y ρ

k−j,k

ρ

+ b0 (Yn−k,n)
1

k

k∑
j=1

K

(
j

k + 1

)
jRn,k(j)

= : T
(1)
n,k + T

(2)
n,k + T

(3)
n,k .

Using Assumption 2.2.4 (iii) we get for the �rst term that

T
(1)
n,k = γ

1

k

k∑
j=1

K

(
j

k + 1

)
+ γ

1

k

k∑
j=1

K

(
j

k + 1

)
(Ej − 1)

= γµ(K) + o

(
1√
k

)
+ γσ(K)

Ñk(K)√
k

, (2.12)

where Ñk(K) :=
√
k

1
k

∑k
j=1 K(

j
k+1)(Ej−1)

σ(K) . The term Ñk(K) is according to Lemma 2.4.1 in

Appendix 2.4 an asymptotic standard normal random variable. In (2.12) we can combine the

o
(

1√
k

)
with Ñk(K) to get

T
(1)
n,k = γµ(K) + γσ(K)

Nk(K)√
k

,

where Nk(K) is again an asymptotic standard normal random variable.

Since Yi,k
D
= 1

1−Ui,k
and the standard exponential distribution has quantile function Q(p) =

− log(1− p) it follows that T
(2)
n,k can be written as

T
(2)
n,k

D
= b0 (Yn−k,n)

1

k

k∑
j=1

K

(
j

k + 1

)
j
exp (ρEk−j+1,n)− exp (ρEk−j,n)

ρ
.

Using the mean value theorem we �nd that

T
(2)
n,k

D
= b0 (Yn−k,n)

1

k

k∑
j=1

K

(
j

k + 1

)
j (Ek−j+1,n − Ek−j,n) exp (ρQj,k) ,
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where Qj,k is a random value between Ek−j,k and Ek−j+1,k, and hence

T
(2)
n,k

D
=b0 (Yn−k,n)

1

k

k∑
j=1

K

(
j

k + 1

)
Ej exp (ρQj,k)

=b0 (Yn−k,n)
1

k

k∑
j=1

K

(
j

k + 1

)(
j

k + 1

)−ρ

Ej

+ b0 (Yn−k,n)
1

k

k∑
j=1

K

(
j

k + 1

)
Ej

(
exp (ρQj,k)−

(
j

k + 1

)−ρ
)

= : T
(2,1)
n,k + T

(2,2)
n,k .

Concerning the term T
(2,1)
n,k we get

T
(2,1)
n,k =b0 (Yn−k,n)

1

k

k∑
j=1

K

(
j

k + 1

)(
j

k + 1

)−ρ

+ b0 (Yn−k,n)
1

k

k∑
j=1

K

(
j

k + 1

)(
j

k + 1

)−ρ

(Ej − 1) ,

so by the law of large numbers it follows that

T
(2,1)
n,k = b0 (Yn−k,n) I1(K, ρ) (1 + oP(1)) .

We now turn to T
(2,2)
n,k . Note that for j = 1, . . . , k we have that

exp (Ek−j+1,k)
D
= exp (− log (1− Uk−j+1,k))

D
= exp (− log (Uj,k))

=
1

Uj,k
,

and hence∣∣∣∣∣exp (ρQj,k)−
(

j

k + 1

)−ρ
∣∣∣∣∣ ≤ max

{∣∣∣∣∣exp (ρEk−j,k)−
(

j

k + 1

)−ρ
∣∣∣∣∣ ,
∣∣∣∣∣exp (ρEk−j+1,k)−

(
j

k + 1

)−ρ
∣∣∣∣∣
}

D
= max

{∣∣∣∣∣U−ρ
j+1,k −

(
j

k + 1

)−ρ
∣∣∣∣∣ ,
∣∣∣∣∣U−ρ

j,k −
(

j

k + 1

)−ρ
∣∣∣∣∣
}

≤ max

{∣∣∣∣∣U−ρ
j+1,k −

(
j + 1

k + 1

)−ρ
∣∣∣∣∣+ cj,k,

∣∣∣∣∣U−ρ
j,k −

(
j

k + 1

)−ρ
∣∣∣∣∣
}
,
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where cj,k =
(

j+1
k+1

)−ρ
−
(

j
k+1

)−ρ
. From this it follows that∣∣∣∣∣∣1k

k∑
j=1

K

(
j

k + 1

)
Ej

(
exp (ρQj,k)−

(
j

k + 1

)−ρ
)∣∣∣∣∣∣

≤ 1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣Ej

∣∣∣∣∣U−ρ
j+1,k −

(
j + 1

k + 1

)−ρ
∣∣∣∣∣+ 1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣ cj,kEj

+
1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣Ej

∣∣∣∣∣U−ρ
j,k −

(
j

k + 1

)−ρ
∣∣∣∣∣

=: T
(2,2,1)
n,k + T

(2,2,2)
n,k + T

(2,2,3)
n,k .

According to Lemma 2.4.2 the terms T
(2,2,1)
n,k and T

(2,2,3)
n,k are OP

(
1√
k

)
. Using the mean value

theorem we see that we can write the term T
(2,2,2)
n,k as

T
(2,2,2)
n,k =

|ρ|
k + 1

1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣ z|ρ|−1
j,k Ej ,

where zj,k is a value between j
k+1 and j+1

k+1 . When |ρ| ≥ 1 it follows that

T
(2,2,2)
n,k ≤ |ρ|

k + 1

1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣Ej ,

and hence by the law of large numbers it follows that T
(2,2,2)
n,k = OP

(
1
k

)
. When |ρ| < 1 we have

T
(2,2,2)
n,k ≤ |ρ|

k + 1

1

k

k∑
j=1

∣∣∣∣K ( j

k + 1

)∣∣∣∣ ( j

k + 1

)|ρ|−1

Ej ,

which by Assumption 2.2.4 (v) and the law of large numbers implies that T
(2,2,2)
n,k = OP

(
1
k

)
.

So

T
(2)
n,k = b0 (Yn−k,n) I1(K, ρ) (1 + oP(1)) .

Concerning the term T
(3)
n,k we �nd using Assumption 2.2.4 (i) that

∣∣∣T (3)
n,k

∣∣∣ =
∣∣∣∣∣∣b0 (Yn−k,n)

k + 1

k

k∑
j=1

Rn,k(j)

∫ j
k+1

0
u(v)dv

∣∣∣∣∣∣
=

∣∣∣∣∣∣b0 (Yn−k,n)
k + 1

k

k∑
j=1

Rn,k(j)

j∑
i=1

∫ i
k+1

i−1
k+1

u(v)dv

∣∣∣∣∣∣
=

∣∣∣∣∣∣b0 (Yn−k,n)
k + 1

k

k∑
i=1

∫ i
k+1

i−1
k+1

u(v)dv

k∑
j=i

Rn,k(j)

∣∣∣∣∣∣
≤ |b0 (Yn−k,n)|

1

k

k∑
i=1

f

(
i

k + 1

) ∣∣∣∣∣∣
k∑

j=i

Rn,k(j)

∣∣∣∣∣∣ .
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For the term
∑k

j=iRn,k(j) it follows that

k∑
j=i

Rn,k(j) =
k∑

j=i

(
R̃n,k(j)− R̃n,k(j + 1)

)
= R̃n,k(i).

For δ, ε > 0 there exists n0 such that for any n ≥ n0, with arbitrary large probability, for

i = 1, . . . , k, ∣∣∣∣∣∣
k∑

j=i

Rn,k(j)

∣∣∣∣∣∣ ≤ ε

(
1

Vi,k

)ρ

max

((
1

Vi,k

)δ

,

(
1

Vi,k

)−δ
)

= εV −ρ−δ
i,k ,

using Lemma 2.4.3. Hence

sup
i∈{1,...,k}

∣∣∣∣∣
∑k

j=iRn,k(j)

V −ρ−δ
i,k

∣∣∣∣∣ = oP(1)

leading to ∣∣∣T (3)
n,k

∣∣∣ ≤ b0 (Yn−k,n) oP(1)
1

k

k∑
i=1

f

(
i

k + 1

)(
V −ρ−δ
i,k

)
,

which by Assumption 2.2.4 (i) and assuming δ < |ρ| is oP (b0 (Yn−k,n)). Combining the results

on T
(1)
n,k , T

(2)
n,k and T

(3)
n,k establishes the result.

Using Theorem 2.2.7 we can create a class of estimators γ̂k(K) :=
Tn,k(K)
µ(K) for γ in the following

way

Proposition 2.2.8. Let X1, . . . , Xn be i.i.d. random variables according to a distribution

satisfying Assumption 2.2.1. If further Assumption 2.2.4 holds with µ(K) 6= 0, then for

k, n→ ∞ such that k
n → 0 and

√
kb
(
n
k

)
→ λ for some constant λ we have

√
k (γ̂k(K)− γ) → N

(
λ
I1(K, ρ)

µ(K)
, γ2

σ2(K)

µ2(K)

)
. (2.13)

Proof. We have

√
k (γ̂k(K)− γ)

D
= γ

σ(K)

µ(K)
Nk(K) +

√
kb
(n
k

) I1(K, ρ)
µ(K)

(1 + oP(1))

→ N

(
λ
I1(K, ρ)

µ(K)
, γ2

σ2(K)

µ2(K)

)
,

under the conditions of the Proposition.

We veri�ed in Lemma 2.2.6 that the kernel function K(t) = tτ (− log t)δ satis�es Assumption

2.2.4. This allows us to construct consistent estimators which are asymptotically normal using

this kernel. We do so in Corollary 2.2.9.
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Corollary 2.2.9. Let X1, . . . , Xn be i.i.d. random variables according to a distribution satis-

fying Assumption 2.2.1. For k, n → ∞ such that k
n → 0 and

√
kb
(
n
k

)
→ λ for some constant

λ we have for the kernel function K(t) = tτ (− log t)δ, τ, δ ≥ 0 that

√
k (γ̂k(K)− γ) → N

(
λ

(τ + 1)δ+1

(τ − ρ+ 1)δ+1
, γ2

Γ(2δ + 1)(τ + 1)2δ+2

(2τ + 1)2δ+1(Γ(δ + 1))2

)
.

In particular, we obtain

(i) For the Hill Kernel
√
k (γ̂k(H)− γ) → N

(
λ

1

1− ρ
, γ2
)
.

(ii) For the Power kernel

√
k (γ̂k(Kτ )− γ) → N

(
λ

τ + 1

τ − ρ+ 1
, γ2

(τ + 1)2

2τ + 1

)
.

(iii) For the Log kernel

√
k (γ̂k(Lδ)− γ) → N

(
λ

1

(1− ρ)δ+1
, γ2

Γ(2δ + 1)

(Γ(δ + 1))2

)
.

A discussion on when to choose which kernel function is a topic of its own, so we will not

spend much time on it since it is not of great importance for this thesis. However, the Hill

kernel always has the smallest asymptotic variance. In general, the kernel function for which

the asymptotic mean squared error of the resulting γ estimator is minimal depends on the

distributional parameters γ and ρ. Concerning the log and power kernel with δ = τ , we
see that the log kernel tends to have a bigger variance than the power kernel, although it

su�ers from less bias. For a detailed discussion of the performance of γ estimators with kernel

functions in the family K(t) = tτ (− log t)δ we refer to Gomes et al. (2007).

2.3 Estimation of the second order parameter

The estimation of the second order parameter in the univariate case is not of grave impor-

tance to this thesis. We will however in Chapter 4 construct estimators for the second order

parameter in the bivariate extreme value framework, which are based on the same ideas as is

used to construct the estimator for the second order parameter ρ. In order to construct an

estimator for ρ we start with the basic building block Tn,k(K) de�ned in (2.8). By making a

Taylor series expansion it follows by Theorem 2.2.7 that

Tα
n,k(K)

D
= γαµα(K) + αγµα−1(K)σ(K)

Nk(K)√
k

+ b
(n
k

)
αγα−1µα−1(K)I1(K, ρ) (1 + oP(1)) ,

where α > 0 and K > 0. The basic idea is to construct a statistic which converges in

probability to a function of ρ, which does not depend on the unknown parameter γ. To this
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end, let K1, . . . ,K8 be kernel functions and de�ne

K(1) := (K1,K2,K3,K4) ,

K(2) := (K5,K6,K7,K8) ,

K(1,2) :=
(
K(1),K(2)

)
,

Ī1 (Ki, ρ) :=
I1 (Ki, ρ)

µ (Ki)
, i ∈ {1, . . . , 8} ,

Ī
(a)
1 (Ki,Kj , ρ) := Īa1 (Ki, ρ)− Īa1 (Kj , ρ) , a = 1, 2, i, j ∈ {1, . . . , 8} .

Using this notation, we consider the ratio of di�erences given by

Ψn,k

(
K(1), α1, α2

)
:=

(
Tn,k(K1)
µ(K1)

)α1

−
(
Tn,k(K2)
µ(K2)

)α1(
Tn,k(K3)
µ(K3)

)α2

−
(
Tn,k(K4)
µ(K4)

)α2
(2.14)

and the function

ψ
(
K(1), α1, α2, ρ

)
:= γα1−α2

α1Ī
(1)
1 (K1,K2, ρ)

α2Ī
(1)
1 (K3,K4, ρ)

,

with α1, α2 > 0.
If k, n→ ∞ such that k

n → 0 and
√
kb
(
n
k

)
→ ∞, then(

Tn,k(K1)
µ(K1)

)α1

−
(
Tn,k(K2)
µ(K2)

)α1

b
(
n
k

) P→ α1γ
α1−1Ī

(1)
1 (K1,K2, ρ)

and (
Tn,k(K3)
µ(K3)

)α1

−
(
Tn,k(K4)
µ(K4)

)α2

b
(
n
k

) P→ α2γ
α2−1Ī

(1)
1 (K3,K4, ρ) .

Hence

Ψn,k

(
K(1), α1, α2

)
P→ ψ

(
K(1), α1, α2, ρ

)
.

This statistic still depends on γ, but we can get rid of this if we consider a ratio of statistics

on the form of (2.14) with appropriately chosen α parameters. So de�ne

Λn,k

(
K(1,2), α1, α2, l

)
:=

Ψn,k

(
K(1), α1, α1 + l

)
Ψn,k

(
K(2), α2, α2 + l

)
and

Λ
(
K(1,2), α1, α2, l, ρ

)
:=

ψ
(
K(1), α1, α1 + l, ρ

)
ψ
(
K(2), α2, α2 + l, ρ

)
where l > 0. If we again assume that If k, n → ∞ such that k

n → 0 and
√
kb
(
n
k

)
→ ∞, then

clearly

Λn,k

(
K(1,2), α1, α2, l

)
P→ Λ

(
K(1,2), α1, α2, l, ρ

)
,
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which does not depend on γ. If the function ρ 7→ Λ
(
K(1,2), α1, α2, l, ρ

)
is bijective, then we

obtain the estimator

ρ̂
(
K(1,2), α1, α2, l

)
:= Λ−1

(
K(1,2), α1, α2, l,Λn,k

(
K(1,2), α1, α2, l

))
(2.15)

for the second order parameter. The consistency of this estimator is estblished in Proposition

2.3.1 using a straightforward application of the continuous mapping theorem.

Proposition 2.3.1. (Goegebeur et al., 2010) Let X1, . . . , Xn be i.i.d. random variables ac-

cording to a distribution satisfying Assumption 2.2.1. Let K1, . . . ,K8 satisfy Assumption

2.2.4, and suppose Ī
(1)
1 (K1,K2), Ī

(1)
1 (K3,K4), Ī

(1)
1 (K5,K6) and Ī

(1)
1 (K7,K8) are wellde-

�ned and nonzero. Then if k, n → ∞ such that k
n → 0 and

√
kb
(
n
k

)
→ ∞ we have

Λn,k

(
K

(1,2), α1, α2, l
)

P→ Λ
(
K

(1,2), α1, α2, l, ρ
)
. Further, if Λ is bijective and Λ−1 is con-

tinuous then ρ̂
(
K

(1,2), α1, α2, l
)
is a consistent estimator for ρ.

In order to establish asymptotic normality of the estimator of ρ, we need the following third

order condition.

Assumption 2.3.2 (Third order condition). There exists a positive real parameter γ, negative
real parameters ρ and β, functions b and b̃ with b(t) → 0 and b̃(t) → 0 for t → ∞, both of

constant sign for large values of t, such that

lim
t→∞

logU(tx)−logU(t)−γ log x
b(t) − xρ−1

ρ

b̃(t)
=

1

β

(
xρ+β − 1

ρ+ β
− xρ − 1

ρ

)
, ∀x > 0.

The third order condition implies that |b̃| is regularly varying of index β (de Haan and Ferreira,

2006). The third order contion is not to restrictive. Among distributions of Pareto-type that

satisfy the second and third order condition are the Fréchet, the Burr, the GP distributions

and the absolute T distribution. This is not a complete list of Pareto-type distributions which

satisfy the second and third order condition. As examples, we show that the Burr and the

absolute T distribution satis�es the third order condition.

Example 2.3.3. In order to verify that the Burr distribution satis�es the third order con-

dition, it is a good idea to choose b(t) = γ tρ

1−tρ . From (2.4) and the choice of b(t) it follows
that

logU(tx)− logU(t)− γ log x

b(t)
− xρ − 1

ρ
=

γtρ(xρ−1)
ρ − 1

2δ t
2ρ
(
x2ρ − 1

)
+O

(
t3ρ
)

γ tρ

1−tρ
− xρ − 1

ρ

(2.16)

=− tρ (xρ − 1)

ρ
+

1

2ρ
tρ
(
x2ρ − 1

)
+O

(
t2ρ
)

(2.17)

=ρtρ
1

ρ

(
x2ρ − 1

2ρ
− xρ − 1

ρ

)
+O(t2ρ). (2.18)

From (2.18) we see that if we choose β = ρ and b̃(t) = ρtρ(1+o(1)) then the Burr distribution

satis�es the third order condition.



30 Estimation of the second order parameter

Example 2.3.4. To verify that the absolute T distribution satis�es the third order condition,

it is a good idea to choose b(t) = − ρD1tρ

1+2
(

D2
D1

− 1
2
D1

)
tρ
. With this choice of b(t) and (2.6) it follows

that

logU(xt)− logU(t)− γ log x

b(t)
− xρ − 1

ρ
=2

(
D2

D1
− 1

2
D1

)
tρ (xρ − 1)

ρ
(2.19)

−
(
D2

D1
− 1

2
D1

)
tρ
(
x2ρ − 1

)
ρ

+O(t2ρ) (2.20)

=− 2ρ

(
D2

D1
− 1

2
D1

)
tρ
1

ρ

(
x2ρ − 1

2ρ
− (xρ − 1)

ρ

)
+O(t2ρ).

(2.21)

From this we see that if we choose β = ρ and b̃(t) on the form b̃(t) = −2ρ
(
D2
D1

− 1
2D1

)
tρ(1 +

o(1)), then the absolute T distribution satis�es the third order condition.

We also have to add an extra condition on the kernel function.

Assumption 2.3.5. Let K be a fuction de�ned on (0, 1) such that Assumption 2.2.4 is sat-

is�ed, and the following extra condition.

(vi) 1
k

∑k
j=1K

(
j

k+1

)(
j

k+1

)−ρ
= I1(K, ρ) + o

(
1√
k

)
, k → ∞.

Lemma 2.3.6. The kernel function considered in Example 2.2.5 given by K(t) := tτ (− log t)δ

also satis�es Assumption 2.3.5

This result can easily be obtained from the proof of Assumption 2.2.4 (iii), and is hence

omitted.

Similar to the procedure in Theorem 2.2.7 we can make an asymptotic expansion of the statistic

in (2.8) using the third order condition.

Theorem 2.3.7. (Goegebeur et al., 2010) Let X1, . . . , Xn be i.i.d. random variables according

to a distribution satisfying Assumption 2.3.2. If Assumption 2.3.5 holds, then for k, n → ∞
such that k

n → 0 we have

Tn,k(K)
D
=γµ(K) + γσ(K)

Nk(K)√
k

+ b (Yn−k,n) I1(K, ρ) + b (Yn−k,n) σ̃(K, ρ)
Pk(K, ρ)√

k

+ b (Yn−k,n) b̃ (Yn−k,n) I2(K, ρ, β) (1 + oP(1)) + b (Yn−k,n)OP

(
1√
k

)
,

where Nk(K) and Pk(K, ρ) are asymptotic standard normally distributed random variables.

We will not give a proof of this result, but the line of proof follows the same as the proof of

Theorem 2.2.7. The result in Theorem 2.3.7 can be used to obtain the asymptotic expansion

Tα
n,k(K)

D
=γαµα(K) + αγαµα−1(K)σ(K)

Nk(K)√
k

+ b (Yn−k,n)αγ
α−1µα−1(K)I1(K, ρ)

+ b (Yn−k,n) b̃ (Yn−k,n)αγ
α−1µα−1(K)I2(K, ρ, β) (1 + oP(1))

+ b2 (Yn−k,n)
α(α− 1)

2
γα−2µα−2(K)I21 (K, ρ) (1 + oP(1)) + b (Yn−k,n)OP

(
1√
k

)
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Before we can present the limiting distribution of the ρ estimator presented in (2.15) we need

to introduce the following notation, with i, j ∈ {1, . . . , 8}.

Ī2(K, ρ, β) :=
I2 (K, ρ, β)

µ(K)
,

Ī2 (Ki,Kj , ρ, β) :=
I2 (Ki, ρ, β)

µ(K)
− I2 (Kj , ρ, β)

µ(K)
,

σ̄(K) :=
σ(K)

µ(K)
,

Nk (Ki,Kj) := σ̄ (Ki)Nk (Ki)− σ̄ (Kj)Nk (Kj) ,

Nk

(
K(1), α1, α2, γ, ρ

)
:=

α1γ
α
1Nk (K1,K2)− ψ

(
K(1), α1, α2, ρ

)
α2γ

α2Nk (K3,K4)

α2γα2−1Ī
(1)
1 (K3,K4, ρ)

,

c1

(
K(1), α1, α2, γ, ρ, β

)
:=

α1γ
α1−1Ī2 (K1,K2, ρ, β)− ψ

(
K(1), α1, α2, ρ

)
α2γ

α2−1Ī2 (K3,K4, ρ, β)

α2γα2−1Ī
(1)
1 (K3,K4, ρ)

,

c2

(
K(1), α1, α2, γ, ρ

)
:=

α1 (α1 − 1) γα1−2Ī
(2)
1 (K1,K2, ρ)− ψ

(
K(1), α1, α2, ρ

)
α2 (α2 − 1) γα2−2Ī

(2)
1 (K3,K4, ρ)

α2γα2−1Ī
(1)
1 (K3,K4, ρ)

,

Nk

(
K(1,2), α1, α2, l, γ, ρ

)
:=

Nk

(
K(1), α1, α1 + l, γ, ρ

)
− Λ

(
K(1,2), α1, α2, l, γ, ρ

)
Nk

(
K(2), α2, α2 + l, γ, ρ

)
ψ
(
K(2), α2, α2 + l, ρ

) ,

c1

(
K(1,2), α1, α2, l, γ, ρ, β

)
:=

c1
(
K(1), α1, α1 + l, γ, ρ, β

)
− Λ

(
K(1,2), α1, α2, l, γ, ρ

)
c1
(
K(2), α2, α2 + l, γ, ρ, β

)
ψ
(
K(2), α2, α2 + l, ρ

) ,

c2

(
K(1,2), α1, α2, l, γ, ρ

)
:=

c2
(
K(1), α1, α1 + l, γ, ρ

)
− Λ

(
K(1,2), α1, α2, l, γ, ρ

)
c2
(
K(2), α2, α2 + l, γ, ρ

)
ψ
(
K(2), α2, α2 + l, ρ

) ,

v2
(
K(1,2), α1, α2, l, γ, ρ

)
:= Var

(
Nk

(
K(1,2), α1, α2, l, γ, ρ

))
.

With this notation we can obtain a result giving the asymptotic normality of our ρ estimator.

Proposition 2.3.8. (Goegebeur et al., 2010) Let X1, . . . , Xn be i.i.d. random variables ac-

cording to a distribution satisfying Assumption 2.3.2. If the kernel functions K1, . . . ,K8

satisfy Assumption 2.3.5 and are such that Ī
(1)
1 (K1,K2, ρ), Ī

(1)
1 (K3,K4, ρ), Ī

(1)
1 (K5,K6, ρ)

and Ī
(1)
1 (K7,K8, ρ) are well de�ned and nonzero, then for k, n → ∞ such that k

n → 0,√
kb
(
n
k

)
→ ∞,

√
kb
(
n
k

)
b̃
(
n
k

)
→ λ1 and

√
kb2
(
n
k

)
→ λ2 we have

√
kb
(n
k

) [
Λn,k

(
K(1,2), α1, α2, l

)
− Λ

(
K(1,2), α1, α2, l, ρ

)]
D→ N

(
λ1c1

(
K(1,2), α1, α2, l, γ, ρ, β

)
+ λ2c2

(
K(1,2), α1, α2, l, γ, ρ

)
, v2
(
K(1,2), α1, α2, l, γ, ρ

))
.
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2.4 Appendix

2.4.1 Proof of Lemma 2.2.6

i)

Since K(t) = 1
t t

τ+1(− log t)δ it follows that∫ t

0
u(v)dv = tτ+1(− log t)δ,

and hence

u(v) = (τ + 1)vτ (− log v)δ − δvτ (− log v)δ−1.

Now∣∣∣∣∣(k + 1)

∫ j
k+1

j−1
k+1

u(t)dt

∣∣∣∣∣ ≤(k + 1)(τ + 1)

∫ j
k+1

j−1
k+1

tτ (− log t)δdt+ (k + 1)δ

∫ j
k+1

j−1
k+1

tτ (− log t)δ−1dt

≤(k + 1)

j
(τ + 1)

∫ j
k+1

0
(− log t)δdt+ (k + 1)δ

∫ j
k+1

j−1
k+1

(− log t)δ−1dt

We distinguish between the two cases δ > 1 and δ ≤ 1. We start with the case δ > 1. So∣∣∣∣∣(k + 1)

∫ j
k+1

j−1
k+1

u(t)dt

∣∣∣∣∣ ≤(k + 1)

j
(τ + 1)

∫ j
k+1

0
(− log t)δdt+

(k + 1)

j
δ

∫ j
k+1

0
(− log t)δ−1dt

= : f

(
j

k + 1

)
.

Next we show that
∫ 1
0 f(x)dx <∞ for the case δ > 1.∫ 1

0
f(x)dx = (τ + 1)

∫ 1

0

1

x

∫ x

0
(− log t)δdtdx+ δ

∫ 1

0

1

x

∫ x

0
(− log t)δ−1dtdx

= (τ + 1)

∫ 1

0
(− log t)δ

∫ 1

t

1

x
dxdt+ δ

∫ 1

0
(− log t)δ−1

∫ 1

t

1

x
dxdt

= (τ + 1)Γ(δ + 2) + δΓ(δ + 1)

<∞.

The case δ ≤ 1 follows since∣∣∣∣∣(k + 1)

∫ j
k+1

j−1
k+1

u(t)dt

∣∣∣∣∣ ≤(k + 1)

j
(τ + 1)

∫ j
k+1

0
(− log t)δdt+ δ

(
− log

(
j

k + 1

))δ−1

= : f

(
j

k + 1

)
.

That
∫ 1
0 f(x)dx <∞ for the case δ ≤ 1 follows by an argument similar to the case δ > 1.
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ii)

The second part is easily veri�ed using the following argument.

σ2(K) =

∫ 1

0
K2(u)du

≤ Γ(2δ + 1)

<∞.

iii)

For the third part we start by considering

I :=

∣∣∣∣∣∣1k
k∑

j=1

K

(
j

k + 1

)
−
∫ 1

0
K(u)du

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

k + 1

k∑
j=1

(
j

k + 1

)τ (
− log

(
j

k + 1

))δ

−
∫ 1

1
k+1

uτ (− log u)δdu

∣∣∣∣∣∣
+

∫ 1
k+1

0
uτ (− log u)δdu+O

(
1

k

)
= : I1 + I2 +O

(
1

k

)
.

Concerning I1 we can use the mean value theorem, in which case it follows that

I1 =

∣∣∣∣∣∣ 1

k + 1

k∑
j=1

[(
j

k + 1

)τ (
− log

(
j

k + 1

))δ

− ũτj (− log ũj)
δ

]∣∣∣∣∣∣ ,
where ũj is a value between j

k+1 and j+1
k+1 . From this we �nd that

I1 ≤

∣∣∣∣∣∣ 1

k + 1

k∑
j=1

(
j

k + 1

)τ
((

− log

(
j

k + 1

))δ

− (− log ũj)
δ

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

k + 1

k∑
j=1

(
ũτj −

(
j

k + 1

)τ)
(− log ũj)

δ

∣∣∣∣∣∣
= : I11 + I12.

The term I11 is easily dealt with if we replace ũj with the value of it that maximizes I11 and
then telescope out the terms in the sum, in which case we get

I11 ≤

∣∣∣∣∣∣ 1

k + 1

k∑
j=1

((
− log

(
j

k + 1

))δ

−
(
− log

(
j + 1

k + 1

))δ
)∣∣∣∣∣∣

=
(log(k + 1))δ

k + 1
.
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A similar argument shows that I12 = O
(
(log(k+1))δ

k+1

)
.

Concerning the term I2 we �nd that

I2 ≤
∫ ∞

log(k+1)
zδe−zdz

=
(log(k + 1))δ

k + 1
+ δ

∫ ∞

log(k+1)
zδ−1e−zdz

=
(log(k + 1))δ

k + 1

(
1 +

k + 1

(log(k + 1))δ
δ

∫ ∞

log(k+1)
zδ−1e−zdz

)
.

If we can show that k+1
(log(k+1))δ

δ
∫∞
log(k+1) z

δ−1e−zdz → 0 as k → ∞ then I2 = O
(
(log(k))δ

k

)
.

Using l'Hôpital's rule and Leibniz's rule it follows that

lim
x→∞

δ
∫∞
log(x) z

δ−1e−zdz

(log(x))δ

x

= lim
x→∞

−δ(log(x))δ−1e− log(x) 1
x(

δ(log(x))δ−1−(log(x))δ

x2

)
= lim

x→∞

−δ
δ − (log(x))

= 0

iv)

The fourth condition is trivially satis�ed since

max
j∈1,...,k

∣∣∣∣K ( j

k + 1

)∣∣∣∣ ≤ (log(k + 1))δ = o
(√

k
)

v)

This condition is also trivially satis�ed since∫ 1

0
|K(u)|u|ρ|−1−εdu =

∫ 1

0
uτ+|ρ|−1−ε(− log u)δdu

=
Γ(δ + 1)

(τ + |ρ| − ε)δ+1

<∞,

assuming ε < τ + |ρ|.
lol �

2.4.2 Lemma's needed in the proof of Theorem 2.2.7

Lemma 2.4.1. (Cherno� et al., 1967; Gomes et al., 2007) Let

Zk :=
1

k

k∑
j=1

K

(
j

k + 1

)
Ej , (2.22)
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where Ei are standard exponential random variables and K (u) , 0 < u < 1 is a kernel

fuction. Furthermore, let

vk =

√√√√1

k

k∑
j=1

K2

(
j

k + 1

)
. (2.23)

Then
√
k
(
Zk − 1

k

∑k
j=1K

(
j

k+1

))
vk

D→ N(0, 1) ⇔ max
1≤j≤k

∣∣∣∣K ( j

k + 1

)∣∣∣∣ = o
(√

kvk

)
(2.24)

as k → ∞. If further we have

1

k

k∑
j=1

K

(
j

k + 1

)
= µ(K) + o

(
1√
k

)
, vk → σ(K) > 0, (2.25)

µ(K) and σ(K) �nite, and

max
1≤j≤k

∣∣∣∣K ( j

k + 1

)∣∣∣∣ = o
(√

k
)
, as k → ∞, (2.26)

then
√
k (Zk − µ(K))

σ(K)

D→ N(0, 1) (2.27)

as k → ∞

Lemma 2.4.2. (Goegebeur et al., 2010) Denote by E1, . . . , Ek standard exponential random

variables and by U1,k ≤ · · · ≤ Uk,k the order statistics of a random sample of size k from

U(0, 1). Assume that
∫ 1
0 |K(u)| du <∞ in case |ρ| ≥ 1 and that

∫ 1
0 |K(u)|u|ρ|−1−εdu <∞ for

some ε > 0 in case |ρ| < 1. Then

Sk =
1

k

k∑
j=1

K

(
j

k + 1

)(
U−ρ
j,k −

(
j

k + 1

)−ρ
)

= OP

(
1√
k

)
(2.28)

for k → ∞.

Lemma 2.4.3. (de Haan and Ferreira, 2006) Suppose for a measurable function f and a

positive function b we have

lim
t→∞

f(tx)− f(t)

b(t)
=
xγ − 1

γ

for all x > 0, where γ is a real parameter. Then for all ε, δ > 0 there is a t0 = t0(ε, δ) such
that for t, tx ≥ t0, ∣∣∣∣f(tx)− f(t)

b0(t)
− xγ − 1

γ

∣∣∣∣ ≤ εxγ max
(
xδ, x−δ

)
,

where

b0(t) :=


γf(t), γ > 0,
−γ(f(∞)− f(t)), γ < 0,

f(t)− t−1
∫ 1
0 f(s)ds, γ = 0

(2.29)



Chapter 3

Multivariate extreme value theory

In this chapter we introduce the basic limit laws in multivariate extreme value theory. After a

transformation of the marginal distribution functions to standard Fréchet margins, we discuss

the dependence structure between the variables. This discussion starts with the exponent

and spectral measure, before we turn our attention to the max domain of attraction in the

multivariate framework and asymptotic independence. This is followed by an introduction to

several other dependence measures. The measures we consider are the Pickands dependence

function and the pair of dependence measures χ and χ̄. We explain the relation between

all these dependence measures and discuss ways of getting from one to the other. Finally

we introduce the model of Ledford and Tawn (1997) and make the connection between the

coe�cient of tail dependence η and the other dependence measures discussed previously.

3.1 Limit laws

The results we present in this section will be based on two-dimensional spaces. General-

izations to higher dimensional spaces are obvious, but require heavier notation. Suppose

(X1, Y1) , . . . , (Xn, Yn) are i.i.d. random vectors with distribution function FXY . We de�ne

the maximum of a set of vectors of this form as

Mn := (max (X1, . . . , Xn) ,max (Y1, . . . , Yn)) ,

which is simply the vector of componentwise maxima. We start by deriving an important

theorem, which is the foundation of our description of the asymptotic distributions that can

occur for an appropriately normalized maximum of the form of Mn. Suppose there exists

sequences of constants (bn)
∞
n=1, (dn)

∞
n=1 and sequences of positive constants (an)

∞
n=1, (cn)

∞
n=1

and a distribution function G with nondegenerate marginals such that

lim
n→∞

P

(
max (X1, . . . , Xn)− bn

an
≤ x,

max (Y1, . . . , Yn)− dn
cn

≤ y

)
= G(x, y) (3.1)

for all continuity points (x, y) of G. Any limit distribution function G in (3.1) with nonde-

generate marginals is called a multivariate extreme value distribution. It follows that

lim
n→∞

P

(
max (X1, . . . , Xn)− bn

an
≤ x

)
= G(x,∞)

36
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and

lim
n→∞

P

(
max (Y1, . . . , Yn)− dn

bn
≤ y

)
= G(∞, y),

since (3.1) implies convergence of the marginal distributions. According to Theorem 1.1.2 we

can chose the constants an, bn, cn and dn such that for some γ1, γ2 ∈ R, we have

G(x,∞) = exp
(
− (1 + γ1x)

− 1
γ1

)
(3.2)

and

G(∞, y) = exp
(
− (1 + γ2y)

− 1
γ2

)
. (3.3)

It is relevant to note that G is continuous, since the two marginal distributions of G are

continuous.

If we let FX and FY be the two marginal distributions of FXY and UX and UY be the

two corresponding tail quantile functions, then according to Theorem 1.1.2 there are positive

functions aX(t) and aY (t), such that

lim
t→∞

UX(tx)− UX(t)

aX(t)
=
xγ1 − 1

γ1
, ∀x > 0

and

lim
t→∞

UY (tx)− UY (t)

aY (t)
=
xγ2 − 1

γ2
, ∀x > 0.

Hence

lim
n→∞

UX(nx)− bn
an

=
xγ1 − 1

γ1

and

lim
n→∞

UY (nx)− dn
cn

=
xγ2 − 1

γ2
,

if we choose the constants an, bn, cn and dn according to Theorem 1.1.2.

We easily see that (3.1) can be written as

G(x, y) = lim
n→∞

Fn
XY (anx+ bn, cny + dn) .

If xn → u and yn → v then by the continuity of G and the monotonicity of FXY we have that

G(u, v) = lim
n→∞

Fn
XY (anxn + bn, cnyn + dn) .

Applying this result with

xn :=
UX(nx)− bn

an
, x > 0

and

yn :=
UY (ny)− dn

cn
, y > 0

gives

G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
= lim

n→∞
Fn
XY (U1(nx), U2(ny)) .

These results establish the following theorem.
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Theorem 3.1.1. (de Haan and Ferreira, 2006) Let (X1, Y1) , . . . , (Xn, Yn) be i.i.d. ran-

dom vectors with distribution function FXY . Suppose there exists sequences of real constants

(bn)
∞
n=1, (dn)

∞
n=1 and positive real constants (an)

∞
n=1 and (cn)

∞
n=1 such that

lim
n→∞

Fn
XY (anx+ bn, cny + dn) = G(x, y)

for all (x, y) of G, and the marginals of G are standardized as in (3.2) and (3.3). Then

with FX(x) := FXY (x,∞), FY (y) := FXY (∞, y) and UX and UY the two corresponding tail

quantile functions, we have that

lim
n→∞

Fn
XY (UX(nx), UY (ny)) = G0(x, y) (3.4)

for all x, y > 0, where

G0(x, y) := G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
and γ1, γ2 are the marginal extreme value indices from (3.2) and (3.3).

Remark 3.1.2. The multivariate extreme value distribution function G
(
xγ1−1
γ1

, y
γ2−1
γ2

)
has

marginal distributions which are standard Fréchet, i.e. FZ(z) = exp
(
−1

z

)
, z > 0. This fact

simpli�es things, because now we only have to discuss the dependence structure between the

two variables.

The following Corollary is obtained from Theorem 3.1.1, which we state without proof. For

details we refer to de Haan and Ferreira (2006), Corollary 6.1.3 and Corollary 6.1.4

Corollary 3.1.3. (de Haan and Ferreira, 2006) Under the conditions of Theorem 3.1.1, we

have for any (x, y) for which 0 < G0(x, y) < 1, that

lim
n→∞

n {1− F : XY (UX(nx), UY (ny))} = − logG0(x, y) (3.5)

and

lim
t→∞

t {1− FXY (UX(tx), UY (ty))} = − logG0(x, y), (3.6)

where t runs through the real numbers.

3.2 The exponent measure and the spectral measure

From Corollary 3.1.3 we can obtain the following usefull theorem.

Theorem 3.2.1. (de Haan and Ferreira, 2006) Let FXY and G0 be distribution functions

where for x, y > 0 with 0 < G0(x, y) < 1 we have that

lim
n→∞

n {1− FXY (UX(nx), UY (ny))} = − logG0(x, y),

where UX and UY are the tail quantile functions of the marginals of FXY . Then there are set

functions ν, ν1, ν2, . . . de�ned for all Borel sets A ⊂ R2
+ with

inf
x,y∈A

max(x, y) > 0

such that
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(i)

νn
{
(s, t) ∈ R2

+ : s > x or t > y
}
= n {1− FXY (UX(nx), UY (ny))} , (3.7)

ν
{
(s, t) ∈ R2

+ : s > x or t > y
}
= − logG0(x, y). (3.8)

(ii) For all a > 0 the set functions ν, ν1, ν2, . . . are �nite measures on R2
+\[0, a]2.

(iii) For each Borel set A ⊂ R2
+ with infx,y∈Amax(x, y) > 0 and ν(∂A) = 0,

lim
n→∞

νn(A) = ν(A). (3.9)

De�nition 3.2.2. The measure ν from (3.8) is called the exponent measure of the extreme

value distribution G0, since

G0(x, y) = exp (−ν (Ax,y))

with

Ax,y :=
{
(s, t) ∈ R2

+ : s > x or t > y
}
.

In the following we let ν(x, y) := ν (Ax,y)

An important property of the exponent measure, which will be needed later in this chapter,

is that it is homogeneous of order −1, as given in Theorem 3.2.3.

Theorem 3.2.3. (de Haan and Ferreira, 2006) For any Borel set A ⊂ R2
+ with inf(x,y)∈Amax(x, y) >

0 and ν(∂A) = 0, and any a > 0,

ν(aA) = a−1ν(A),

where aA is the set obtained by multiplying all elements of A by a.

From the exponent measure we can also obtain the spectral measure. The spectral measure

arises when we make a one-to-one transformation R2
+\{(0, 0)} → (0,∞)× [0, c] for some c > 0,{

r = r(x, y),
d = d(x, y),

with the property that for all a, x, y > 0, we have{
r(ax, ay) = ar(x, y),
d(ax, ay) = d(x, y).

We can think of r as a radius and d as an angle or a direction. In this thesis we will only

consider the transformation {
r(x, y) = x+ y,
d(x, y) = x

x+y ,

in which case the following theorem can be shown to hold.
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Theorem 3.2.4. (de Haan and Ferreira, 2006) For each limit distribution G from (3.1),

(3.2) and (3.3) there exist a probability distribution (denoted by the distribution function H)

concentrated on [0, 1] with mean 1
2 such that for x, y > 0,

G

(
xγ1 − 1

γ1
,
yγ2 − 1

γ2

)
= G0(x, y)

= exp

(
−2

∫ 1

0

(
ω

x
∨ 1− ω

y

)
dH(ω)

)
, (3.10)

where ω
x ∨ 1−ω

y := max
(
ω
x ,

1−ω
y

)
.

From (3.10) we see that the limit distributions in (3.1) are characterized solely by the spectral

measure H and the marginal extreme value indices. Many more transformations than the one

we considered can be chosen in order to construct a spectral measure. In fact there are endless

possibilities. The transformation to choose depends on the situation at hand, and in a sense

they are all equivalent, since one can be transformed into the other.

From (3.8) and (3.10) we see that the connection between the exponent measure and the

spectral measure is given by

ν(x, y) = 2

∫ 1

0

(
ω

x
∨ 1− ω

y

)
dH(ω).

However, it is not always obvious how to get from one measure to the other using this relation.

In case this is not obvious, and G0 is absolutely continuous, we can use a method discovered

by Coles and Tawn (1991), to compute the spectral density from the exponent measure. In

the bivariate case, the point masses of H on 0 and 1 are

H({0}) = −1

2
lim
x→0

∂ν

∂y
(x, y), (3.11)

H({1}) = −1

2
lim
y→0

∂ν

∂x
(x, y). (3.12)

and the density for 0 < ω < 1 is given by

h(ω) = −1

2

∂2ν(x, y)

∂x∂y

∣∣∣∣
(ω,1−ω)

. (3.13)

Next we will consider some examples of spectral and exponent measures.

Example 3.2.5. We start by considering two important special cases of H. The �rst is the

distribution function which places a point mass of 1 on ω = 1
2 . In this case we obtain

G0(x, y) = exp
(
−max

(
x−1, y−1

))
, x, y > 0,

which corresponds to complete dependence between the two variables. Here G0 is not ab-

solutely continuous, so the method discussed above does not apply. The second case is the

distribution function which places point mass of 1
2 on both ω = 0 and ω = 1. In this case it

follows that

G0(x, y) = exp
(
−
(
x−1 + y−1

))
, x, y > 0,

which corresponds to independence between the two variables. Here G0 is absolutely contin-

uous, though with a spectral measure putting masses of 1
2 at 0 and 1.

a �
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Example 3.2.6. The logistic model (Gumbel, 1960a,b) given by

ν(x, y) =
(
x−

1
α + y−

1
α

)α
, x, y > 0, 0 < α < 1,

is the oldest parametric family of bivariate extreme value dependence structures. It is a

versatile model which covers all levels of dependence from independent variables to completely

dependent variables. We see that for α→ 0 we get

ν(x, y) = max
(
x−1, y−1

)
and for α→ 1 it follows that

ν(x, y) = x−1 + y−1,

which corresponds to complete dependence and independence between the variables, respec-

tively. The logistic model does however not allow for asymmetry in the dependence structure,

as the variables are exchangeable.

From the exponent measure we can compute the point mass of H at 0

H({0}) = 1

2
lim
x→0

y−
1
α
−1
(
x−

1
α + y−

1
α

)α−1
= 0,

using (3.11). Because of symmetry the point mass of H at 1 is also 0. The spectral density
on (0, 1) can be found using (3.13). We start by �nding

∂2ν(x, y)

∂x∂y
= −1− α

α
x−

1
α
−1y−

1
α
−1
(
x−

1
α + y−

1
α

)α−2
.

From this we obtain the spectral density on (0, 1)

h(ω) =
1

2

1− α

α
ω− 1

α
−1(1− ω)−

1
α
−1
(
ω− 1

α + (1− ω)−
1
α

)α−2
.

a �

3.3 Domain of attraction and asymptotic independence

In order to discuss the domain of attraction in the multivariate case we �rst need to introduce

the concept of max stability.

De�nition 3.3.1. If there exists sequences of constants (bn)
∞
n=1, (dn)

∞
n=1 and sequences of

positive constants (an)
∞
n=1 and (cn)

∞
n=1 such that

Gn(anx+ bn, cny + dn) = G(x, y), ∀x, y ∈ R, ∀n ∈ N, (3.14)

for some distribution function G. Then G belongs to the class of max stable distributions.

With this de�nition we are now able to discuss the bivariate max domain of attraction.

De�nition 3.3.2. Let G : R2 → R+ be a max stable distribution function. A distribution

function FXY is said to be in the max domain of attraction of G if there exists sequences of

constants (bn)
∞
n=1, (dn)

∞
n=1 and sequences of positive constants (an)

∞
n=1 and (cn)

∞
n=1 such that

lim
n→∞

Fn
XY (anx+ bn, cny + dn) = G(x, y) (3.15)

for all x, y ∈ R.
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Our next proposition shows that the class of max stable distributions and the class of extreme

value distributions coincide.

Proposition 3.3.3. A distribution function G is max stable if and only if it is an extreme

value distribution.

Proof. Assume G is a max stable distribution. Then by De�nition 3.3.1 there exists sequences

of constants (bn)
∞
n=1, (dn)

∞
n=1 and sequences of positive constants (an)

∞
n=1 and (cn)

∞
n=1 such

that

Gn(anx+ bn, cny + dn) = G(x, y), ∀x, y ∈ R, ∀n ∈ N.

Since

lim
n→∞

Gn(anx+ bn, cny + dn) = G(x, y), ∀x, y ∈ R,

it follows by Theorem 3.1.1 that G is an extreme value distribution.

Now, assume that G is an extreme value distribution. We can without loss of generality

assume that G is on the same form as G0 de�ned in Theorem 3.1.1. By De�nition 3.2.2 and

Theorem 3.2.3, it follows that

Gn(nx, ny) = exp(−nν(nAx,y)), ∀x, y ∈ R, ∀n ∈ N
= exp(−ν(Ax,y))

= G(x, y).

So G satis�es De�nition 3.3.1 with an = cn = n and bn = dn = 0, and is hence a max stable

distribution.

Next we present a theorem which gives some equivalent formulations of the max domain of

attraction condition.

Theorem 3.3.4. (de Haan and Ferreira, 2006) Let G be a max stable distribution. Let the

marginal distribution functions be exp
(
− (1 + γ1x)

− 1
γ1

)
and exp

(
− (1 + γ2y)

− 1
γ2

)
, and let

H be its spectral measure according to the representation of Theorem 3.2.4. Then

(i) If the distribution function FXY of the random vector (X,Y ) with continuous marginal

distribution functions FX and FY is in the max domain of attraction of G, then the

following equivalent conditions are ful�lled:

(a) With UX and UY being the tail quantile functions of FX and FY , we have for

x, y > 0, that

lim
t→∞

1− FXY (UX(tx), UY (tx))

1− FXY (UX(t), UY (t))
= S(x, y) (3.16)

with S(x, y) :=
logG

(
xγ1−1

γ1
, y

γ2−1
γ2

)
logG(0,0) .

(b) For all r > 1 and all s ∈ [0, 1] that are continuity points of H,

lim
t→∞

P

(
V +W > rt and

V

V +W
≤ s

∣∣∣∣V +W > t

)
= r−1H(s), (3.17)

where V := 1
1−FX(X) and W := 1

1−FY (Y )
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(ii) Conversely, if the continuous marginal distribution functions FX and FY are in the do-

main of attraction of exp
(
− (1 + γ1x)

− 1
γ1

)
and exp

(
− (1 + γ2y)

− 1
γ2

)
, respectively, and

any limit relation (3.16)-(3.17) holds for some positive function S or some distribution

function H, then FXY is in the max domain of attraction of G.

We saw in Example 3.2.5 that there exists a special case of the spectral measure, where the

max stable distribution has independent components. This gives inspiration to the following

de�nition.

De�nition 3.3.5. A random vector (X,Y ) whose distribution function FXY is in the domain

of attraction of a max stable distribution with independent components, is said to have the

property of asymptotic independence.

From this de�nition we are able to obtain the following theorem.

Theorem 3.3.6. (de Haan and Ferreira, 2006) Let FXY : R2 → R+ be a probability distribu-

tion function. Suppose that its marginal distribution functions FX : R → R+ and FY : R → R+

satisfy

lim
n→∞

Fn
X (anx+ bn) = exp

(
− (1 + γ1x)

− 1
γ1

)
and

lim
n→∞

Fn
Y (cny + dn) = exp

(
− (1 + γ2y)

− 1
γ2

)
for all x, y for which 1 + γ1x > 0, 1 + γ2y > 0 and where (bn)

∞
n=1, (dn)

∞
n=1 are sequences of

real constants and (an)
∞
n=1 and (cn)

∞
n=1 are sequences of positive real constants. Let (X,Y ) be

a random vector with distribution function FXY . If

lim
t→∞

P (X > UX(t), Y > UY (t))

P (Y > UY (t))
= 0, (3.18)

then

lim
n→∞

Fn
XY (anx+ bn, cny + dn) = exp

(
− (1 + γ1x)

− 1
γ1 − (1 + γ2y)

− 1
γ2

)
for 1 + γ1x > 0 and 1 + γ2y > 0. Hence X and Y are asymptotically independent.

Conversely, asymptotic independence entails (3.18).

Proof. Assume (3.18) holds. Then also

lim
t→∞

tP (X > UX(t), Y > UY (t))

tP (Y > UY (t))
= 0.

Using Theorem 1.1.2 (i) and (iii) with x = 0 we �nd that

lim
t→∞

tP (Y > UY (t)) = 1, (3.19)

and hence

lim
t→∞

tP (X > UX(t), Y > UY (t)) = 0.

Because of monotonicity, it follows that

lim
t→∞

tP (X > UX(tx), Y > UY (ty)) = 0, ∀x, y > 0,
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and then also for the set Ãx,y :=
{
(s, t) ∈ R2

+ : s > x and t > y
}
we have

ν
(
Ãx,y

)
= lim

n→∞
νn

(
Ãx,y

)
= lim

n→∞
nP (X > UX(tx), Y > UY (ny))

= 0, ∀x, y > 0.

This means that the spectral measure puts its entire mass on the lines x = 0 and y = 0, i.e.

H[{0}] = 1

2
and H[{1}] = 1

2
.

This is equivalent to X and Y being asymptotically independent.

Conversely, assume that X and Y are asymptotically independent. Then

G0(x, y) = exp
(
−x−1 − y−1

)
, x, y > 0,

and hence for x = y = 1 we have

G0(1, 1) = exp (−2) .

Using Corollary 3.1.3, this implies that

2 = lim
t→∞

t (1− P (X ≤ UX(t), Y ≤ UY (t))) (3.20)

= lim
t→∞

t (P (X > UX(t)) + P (Y > UY (t))− P (X > UX(t), Y > UY (t))) . (3.21)

From Theorem 1.1.2 (i) and (iii) it follows that

lim
t→∞

tP (X > UX(t), Y > UY (t)) = 0,

and hence by (3.19), we have that

lim
t→∞

P (X > UX(t), Y > UY (t))

P (Y > UY (t))
= 0.

3.4 Pickands dependence function

Whereas the dependence measures we have discussed previously have straightforward general-

izations from the bivariate case to the multidimensional case, this is not true for the following

dependence measure. This is strictly a bivariate dependence measure. The dependence mea-

sure we are going to discuss is related to the function L : R2
+ → R given by

L(x, y) := − logG0

(
1

x
,
1

y

)
. (3.22)

This can also be expressed in terms of the exponent measure as

L(x, y) = ν

{
(s, t) ∈ R2

+ : s >
1

x
or t >

1

y

}
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using (3.8), or in terms of the spectral measure as

L(x, y) = 2

∫ 1

0
(ωx ∨ (1− ω)y) dH(ω) (3.23)

using (3.10). The function L has the following properties. These are easy to derive from the

properties of the exponent and spectral measure and will therefore for brevity not be proven

here.

Proposition 3.4.1. (de Haan and Ferreira, 2006) Let L be as de�ned in (3.22). Then L has

the following properties.

(i) Homogeneity of order 1: L(ax, ay) = aL(x, y), for all a, x, y > 0.

(ii) L(x, 0) = L(0, x) = x, for all x > 0.

(iii) x ∨ y ≤ L(x, y) ≤ x+ y, for all x, y > 0.

(iv) Let (X,Y ) be a random vector with distribution function G0(x, y). If X and Y are

independent, then L(x, y) = x + y, for x, y > 0. If X and Y are completely dependent,

then L(x, y) = x ∨ y for x, y > 0.

(v) L is continuous.

(vi) L(x, y) is a convex function: L (λ (x1, y1) + (1− λ) (x2, y2)) ≤ λL (x1, y1)+(1− λ)L (x2, y2)
for all x1, x2, y1, y2 > 0 and λ ∈ [0, 1].

From the function L we can obtain the Pickands dependence function A : [0, 1] → R introduced

in Pickands (1981). This function is given by

A(t) := − logG0

(
1

1− t
,
1

t

)
= L(1− t, t). (3.24)

If we let t = y
x+y we easily �nd that

L(x, y) = (x+ y)A

(
y

x+ y

)
,

and hence Pickands dependence function completely determines the function L.
Pickands dependence function can easily be connected to the spectral measure through the

function L. If we combine (3.23) and (3.24) we get

A(t) = 2

∫
[0,1]

(ω(1− t) ∨ (1− ω)t)dH(ω)

= 2t

∫
[0,t]

(1− ω)dH(ω) + 2(1− t)

∫
(t,1]

ωdH(ω).

Since H has mean 1
2 we have that

∫
[0,1] ωdH(ω) =

∫
[0,1](1−ω)dH(ω) = 1

2 . Using this it follows

that ∫
(t,1]

ωdH(ω) =
1

2
−H([0, t]) +

∫
[0,t]

(1− ω)dH(ω).
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Hence

A(t) = 2

∫
[0,t]

(1− ω)dH(ω) + (1− t) (1− 2H([0, t])) .

The term
∫
[0,t](1− ω)dH(ω) can also be written as

∫
[0,t]

(1− ω)dH(ω) =

∫
[0,t]

∫
[ω,1]

dudH(ω)

=

∫
[0,1]

∫
[0,u∧t]

dH(ω)du

=

∫
[0,t]

∫
[0,u]

dH(ω)du+

∫
(t,1]

∫
[0,t]

dH(ω)du

=

∫
[0,t]

H([0, u])du+ (1− t)H([0, t]),

where u ∧ t := min(u, t). Hence

A(t) = 1− t+ 2

∫
[0,t]

H([0, ω])dω.

This means that H can be computed from A through

H([0, ω]) =

{
1
2 (1 +A′(ω)) if ω ∈ [0, 1),
1 if ω = 1,

where A′(ω) denotes the right-sided derivative of A.
The point masses of H at 0 and 1 can be computed as

H({0}) = 1

2

(
1 +A′(0)

)
and

H({1}) = 1

2

(
1−A′(1)

)
,

where A′(1) = sup0≤t≤1A
′(t).

Example 3.4.2. Using the results from example 3.2.5, we see that Pickands dependence

function in the case of completely dependent variables is

A(t) = max(1− t, t),

and in the case of independent variables becomes

A(t) = 1.

This is illustrated in Figure 3.1.
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Figure 3.1: Illustration of Pickands dependence function in case of independent variables and

completely dependent variables. The dotted line is Pickands dependence function when the

variables are independent and the dashed line is when the variables are completely dependent.

In fact, these two cases are also the lower and upper bound of Pickands dependence function,

respectively, as can be seen from Proposition 3.4.1(iii)

a �
Example 3.4.3. For the logistic model, Pickands dependence function can easily be computed

through the exponent measure.

A(t) = ν

(
1

1− t
,
1

t

)
=
(
(1− t)

1
α + t

1
α

)α
.

This function is illustrated in Figure 3.2 for di�erent values of α.
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Figure 3.2: Illustration of Pickands dependence function for di�erent values of α in the logistic

model. The solid lines are for α→ 0 and α→ 1, described in Example 3.4.2. The dashed line

is for α = 0.25, the dotted line is for α = 0.5 and the dashed-dotted line is for α = 0.75.
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3.5 The dependence measures χ and χ̄

So far we have focussed on functions that allow us to recover G0, and hence describe the

dependence structure completely. However, similar to classical statistics one can try and sum-

marize the dependence structure in a number of well chosen coe�cients, that give a rough,

but representative picture of the full dependency structure.

Let (X,Y ) be a bivariate random vector with distribution function FXY , and marginal distri-

bution functions FX and FY . For simplicity, we assume that FX and FY are continuous. If

we assume that FX and FY are identically, we can de�ne the measure χ by

χ := lim
z↑z∗

P (Y > z|X > z) ,

assuming that the limit exists. A generalization of this is easily obtained if FX and FY are

not identical. Since U1 := FX(X) and U2 := FY (Y ) are uniformly distributed on (0, 1), we
can de�ne

χ := lim
u↑1

P (U2 > u|U1 > u) , (3.25)

assuming that the limit exists. In the following we will use the latter de�nition of χ. From

(3.18) we get that χ = 0 corresponds to asymptotic independence. When χ > 0 we are in

the class of asymptotically dependent variables, and here, larger values of χ indicate stronger

dependence between the variables. So χ > 0 is a measure of extremal dependence in the class of

asymptotic dependent variables. Because the de�nition of χ is based on the joint distribution

of FX(X) and FY (Y ) it seems natural natural to make the link between χ and the other

dependence measures we have discussed previously, through the copula function. Therefore

we will give a short introduction to copulas, and mention some of their basic properties.

De�nition 3.5.1. A copula C : [0, 1]2 → [0, 1] is a function with the following properties.

(i) For every x, y ∈ [0, 1]

C(x, 0) = 0 = C(0, y)

and

C(x, 1) = x and C(1, y) = y

(ii) For every x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2,

C (x2, y2)− C (x2, y1)− C (x1, y2) + C (x1, y1) ≥ 0

From the de�nition of copulas, we easily obtain the following bounds, which are known as the

Fréchet-Hoe�ding bounds.

Theorem 3.5.2. Let C be a copula. Then for every x, y ∈ [0, 1],

max(x+ y − 1, 0) ≤ C(x, y) ≤ min(x, y). (3.26)
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Proof. Let x1, x2, y1, y2 ∈ [0, 1] be such that x1 ≤ x2 and y1 ≤ y2. Then t 7→ C(t, y2)−C(t, y1)
is nondecreasing since

C (x2, y2)− C (x2, y1) ≥ C (x1, y2)− C (x1, y1) .

Similarly t 7→ C(x2, t)− C(x1, t) is nondecreasing.
Now, let x, y ∈ [0, 1] be arbitrary. Since

C(x, y) ≤ C(x, 1) = x and C(x, y) ≤ C(1, y) = y,

we have that C(x, y) ≤ min(x, y). Furthermore

1− x− y + C(x, y) ≥ 0 and C(x, y) ≥ 0,

so C(x, y) ≥ max(x+ y − 1, 0).

The next theorem about copulas is known as Sklar's theorem. It makes the connection between

a joint distribution function and its univariate margins.

Theorem 3.5.3. (Sklar, 1959) Let FXY be a joint distribution function with margins FX and

FY . Then there exists a copula C such that for all x, y ∈ [−∞,∞],

FXY (x, y) = C (FX(x), FY (y)) . (3.27)

If FX and FY are continuous, then C is unique. Otherwise, C is uniquely determined on

RanFX × RanFY , where Ran denotes the range.

Conversely, if C is a copula and FX and FY are distribution functions, then the function

FXY (x, y) := C (FX(x), FY (y)) is a joint distribution function with margins FX and FY .

Now we return to the connection between χ and the other dependence measures. This is found

through the function χ(u), which is de�ned as

χ(u) : = 2− logC(u, u)

log u
, 0 < u < 1. (3.28)

Concerning this function we have the following proposition, which makes the connection be-

tween χ and the exponent measure clear.

Proposition 3.5.4. For the function χ(u) de�ned in (3.28) and the measure χ de�ned in

(3.25) we have

(i) limu→1 χ(u) = χ.

(ii) In case G is a bivariate extreme value distribution, χ(u) = 2− ν(1, 1).

(iii) 2− log(max(2u−1,0))
log u ≤ χ(u) ≤ 1.

Proof. (i) By making a Taylor series expansion of log x around 1 we �nd that

χ(u) = 2−
1− C(u, u) +O

(
(1− C(u, u))2

)
1− u+O ((1− u)2)

, u→ 1.
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Using the bounds for copulas, given in Theorem 3.5.2, it follows that

χ(u) = 2−
1− C(u, u) +O

(
(1− u)2

)
1− u+O ((1− u)2)

= 2− 1− C(u, u)

1− u
+ o(1), u→ 1.

From this we obtain

χ(u) =
1− 2u+ P (U1 ≤ u,U2 ≤ u)

1− u
+ o(1)

= P (U1 > u|U2 > u) + o(1), u→ 1.

Hence limu→1 χ(u) = χ.

(ii) Concerning the connection between χ and ν, we can without loss of generality assume

that G is an extreme value distribution with standard Fréchet margins, so

exp(−ν(x, y)) = P (X ≤ x, Y ≤ y)

= P (FX(X) ≤ FX(x), FY (Y ) ≤ FY (y))

= C (FX(x), FY (y)) .

If we make the substitutions u1 := exp
(
− 1

x

)
and u2 = exp

(
− 1

y

)
it follows that

C (u1, u2) = exp

(
−ν
(
− 1

log u1
,− 1

log u2

))
.

Combining this result with the de�nition of χ(u) and using the homogeneity property

of ν we �nd that

χ(u) = 2−
−ν
(
− 1

log u ,−
1

log u

)
log u

= 2− ν(1, 1).

(iii) The bounds for χ(u) are easily obtained using the bounds for copulas, given in Theorem

3.5.2.

Note that Proposition 3.5.4 (ii) implies that χ(u) is constant for bivariate extreme value dis-

tributions. So if χ(u) is not constant, then there is evidence for lack of model �t.

If (U, V ) is distributed according to some copula C, and we have some independent observa-

tions (U1, V1), . . . , (Un, Vn) from the copula C, then a natural way to estimate χ(u) is by

χ̂(u) := 2− log Ĉ(u, u)

log u
, (3.29)

where Ĉ(u, u) is de�ned by

Ĉ(u, u) :=
1

n

n∑
i=1

1{Ui≤u,Vi≤u}.

The asymptotic distribution of the estimator χ̂(u) is given in Proposition 3.5.5.
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Proposition 3.5.5. Assume that (U, V ) are distributed according to the copula C. Then we

have for χ̂(u) de�ned in (3.29) that

√
n (χ̂(u)− χ(u))

D→ N

(
0,
C(u, u)(1− C(u, u))

log2(u)C2(u, u)

)
. (3.30)

Proof. It follows that

E(Ĉ(u, u)) = C(u, u),

and since Ĉ(u, u) is the estimate of the succes probability for a Bernoulli random variable, we

have that

var
(
Ĉ(u, u)

)
=
C(u, u)(1− C(u, u))

n
.

So by the central limit theorem, it follows that

√
n
(
Ĉ(u, u)− C(u, u)

)
D→ N(0, C(u, u)(1− C(u, u))).

From the Delta method, it then follows that

√
n (χ̂(u)− χ(u))

D→ N

(
0,
C(u, u)(1− C(u, u))

log2(u)C2(u, u)

)
,

which is the desired result.

As mentioned previously, when χ = 0 we are in the class of asymptotically independent

variables. However at �nite levels, the variables are not necessarily independent. This gives

rise to the dependence measure χ̄. If we de�ne the survivor copula function C̄(x, y) by

C̄(x, y) := P (U1 > x,U2 > y) = 1− x− y + C(x, y), 0 ≤ x, y ≤ 1,

and let

χ̄(u) :=
2 log(1− u)

log C̄(u, u)
− 1, 0 < u < 1, (3.31)

then we de�ne the measure χ̄ to be

χ̄ := lim
u→1

χ̄(u), (3.32)

assuming that the limit exists. Writing the survival copula in terms of the copula and using

the bounds in Theorem 3.5.2 we �nd that

2 log(1− u)

log(max(0, 1− 2u))
− 1 ≤ χ̄(u) ≤ 1, 0 < u < 1.

Hence, the bounds for χ̄ are given by −1 ≤ χ ≤ 1.
If (U, V ) is distributed according to some copula C, and we have some independent obser-

vations (U1, V1), . . . , (Un, Vn) from the copula C, then the function χ̄(u) can be estimated

by

ˆ̄χ(u) :=
2 log(1− u)

log ˆ̄C(u, u)
− 1, (3.33)
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where

ˆ̄C(u, u) :=
1

n

n∑
i=1

1{Ui>u,Vi>u}. (3.34)

The asymptotic distribution of the estimator ˆ̄χ(u) is described in Proposition 3.5.6.

Proposition 3.5.6. Assume that (U, V ) are distributed according to the copula C. Then we

have for ˆ̄χ(u) de�ned in (3.34) that

√
n
(
ˆ̄χ(u)− χ̄(u)

) D→ N

(
0,

(
2 log(1− u)

C̄(u, u) log2(C̄(u, u))

)2
)
. (3.35)

The proof of this result is analogous to the proof of Proposition 3.5.5. Note that if u < 1 but

either all Ui < u or all Vi < u then the estimator ˆ̄χ(u) = −1. This implies that in practice

the estimator will always be −1, when u is chosen su�ciently large.

When χ = 0, we have that χ̄ is a measure of dependence within the class of asymptotically

independent variables. Alternatively, χ > 0 and χ̄ = 1 signi�es we are in the class of asymp-

totically dependent variables. So the complete pair (χ, χ̄) is needed to summarize the extremal

dependence. For the pair (χ > 0, χ̄ = 1), we are in the class of asymptotic dependent variables,

where the value of χ is a measure of dependence between the variables. Alternatively, we are

in the class of asymptotically independent variables when we have the pair (χ = 0, χ̄ ≤ 1),
and here, the value of χ̄ is a measure of dependence within this class. This discussion is

summarized in Table 3.1.

Asymptotic independence Asymptotic dependence

χ 0 (0, 1]

χ̄ [−1, 1] 1

Table 3.1: Summary of the pair of measures (χ, χ̄).

Example 3.5.7. In the case of an extreme value distribution with completely dependent

variables, we have that ν(1, 1) = 1, and hence χ = 1. The copula needed to �nd χ̄ is found to

be

C(u, u) = u.

Hence

χ̄(u) =
2 log(1− u)

log(1− u)
− 1 = 1,

which also implies that χ̄ = 1.
When the variables are independent, ν(1, 1) = 2, so χ = 0. This time the copula needed to

�nd χ̄ is

C(u, u) = u2

Thus

χ̄(u) =
2 log(1− u)

log ((1− u)2)
− 1

= 0,
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so χ̄ = 0.
a �

Example 3.5.8. Concerning the logistic dependence model, we have that ν(1, 1) = 2α, which
means that χ = 2− 2α. The copula needed to �nd χ̄ is

C(u, u) = u2
α
.

From this it follows that

χ̄(u) =
2 log(1− u)

log (1− 2u+ u2α)
− 1.

For α = 1 we have that χ̄(u) = 0. For 0 ≤ α < 1, we get by using L'Hôpitals rule that

χ̄ = lim
u→1

2(1− 2u+ u2
α
)

(1− u) (2− 2αu2α−1)
− 1

= lim
u→1

2(−2 + 2αu2
α−1)

−2− 2α(2α − 1)u2α−2 + 22αu2α−1
− 1

=
−4 + 2α+1

−2− 2α(2α − 1) + 22α
− 1

= 1

a �

Example 3.5.9. Even though the bivariate normal distribution is not a bivariate extreme

value distribution, it deserves some attention. We consider the bivariate normal distribution

with mean zero, unit variances and correlation coe�cient |ρ| < 1. It can be shown that in this

case, the marginal random variables are asymptotically independent (Sibuya, 1960; de Haan

and Ferreira, 2006), i.e. χ = 0. The copula for the bivariate normal distribution with standard

normal margins and correlation coe�cient |ρ| < 1 is for 0 < u, v < 1,

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π (1− ρ2)
1
2

exp

(
− 1

2 (1− ρ2)

(
x2 + y2 − 2ρxy

))
dxdy,

where Φ−1(·) denotes the quantile function of the univariate standard normal distribution.

Using this copula we can obtain

χ(u) = 2−
log

(∫ Φ−1(u)
−∞

∫ Φ−1(u)
−∞

1

2π(1−ρ2)
1
2
exp

(
− 1

2(1−ρ2)

(
x2 + y2 − 2ρxy

))
dxdy

)
log u

for 0 < u < 1. As can be seen in Figure 3.3 the convergence of χ(u) to χ = 0 becomes very

slow when ρ increases.
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Figure 3.3: Illustration of χ(u) for the bivariate normal distribution with di�erent values of

ρ. The upper and lower bounds for χ(u) is shown as the dashed lines and the curves in solid

correspond to ρ = −0.9,−0.8, . . . , 0.9 (bottom to top).

a �

3.6 The model of Ledford and Tawn

Before we introduce the model of Ledford and Tawn, we require some technical preliminaries.

De�nition 3.6.1. A function L : (0,∞)2 → (0,∞) is called bivariate slowly varying if there

exists a function g : (0,∞)2 → (0,∞) such that

lim
t→∞

L (tz1, tz2)

L(t, t)
= g (z1, z2) , 0 < z1, z2 <∞,

where the function g is homogeneous of order zero, i.e.

g (sz1, sz2) = g (z1, z2) , 0 < s, z1, z2 <∞.

Since g is homogeneous of order zero, there exists a function g∗ : (0, 1) → (0,∞) such that

g (z1, z2) = g∗

(
z1

z1+z2

)
for all 0 < z1, z2 <∞. If

g∗(w)

g∗(1− w)
, 0 < w < 1

is slowly varying at w → 0 and w → 1, then L is said to be quasi symmetric. Now, let (X,Y )
be a random vector with distribution function FXY , and assume that the margins FX and FY

are standard Fréchet. Ledford and Tawn (1997) proposed to model the joint survivor function

of X and Y as

F̄XY (x, y) := P (X > x, Y > y) = L(x, y)x−c1y−c2 , c1, c2, x, y > 0, (3.36)
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where L is a quasi symmetric, bivariately slowly varying function. In the case where z = x = y
the model reduces to

F̄XY (z, z) = L(z)z−
1
η , η, z > 0, (3.37)

where the parameter η := 1
c1+c2

is called the coe�cient of tail dependence, and the function

L(z) := L(z, z) is slowly varying at in�nity. This model was originally proposed by Ledford

and Tawn (1996). Even though the only restriction on η we have is that η > 0, we can easily

establish that η ≤ 1. Indeed, since 1− exp
(
−1

z

)
∼ 1

z , it follows that

P (X > z, Y > z) ≤ P (X > z)

= 1− exp

(
−1

z

)
∼ 1

z
. (3.38)

If η > 1 then (3.37) and (3.38) would make a contradiction.

The connection between η and χ is easily established since

P (Y > z|X > z) =
P (Y > z,X > z)

P (X > z)
∼ L(z)z1−

1
η , z → ∞.

If limz→∞ L(z)z1−
1
η exists, then

χ = lim
z→∞

L(z)z1−
1
η .

The survival function in (3.36) can also be expressed in terms of the survival copula, through

C̄

(
exp

(
−1

x

)
, exp

(
−1

y

))
= P (X > x, Y > y), x, y > 0

and hence

C̄(u, u) = L
(
− 1

log u

)
(− log u)

1
η , 0 < u < 1.

Thus, by (3.31), we get that

χ̄(u) =
2 log(1− u)

log
(
L
(
− 1

log u

)
(− log u)

1
η

) − 1

∼ 2 log(1− u)

logL
(

1
1−u

)
+ 1

η log(1− u)
− 1, u→ 1.

In order to evaluate this limit, we need the following proposition.

Proposition 3.6.2. (Beirlant et al., 2004) Let L be slowly varying at in�nity. Then

lim
x→∞

logL(x)
log(x)

= 0.
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By Proposition 3.6.2 the dominant term in the denominator is log(1− u), hence

χ̄(u) ∼ 2η − 1, u→ 1.

Thus χ̄ = 2η − 1.
From the connection between η and χ and χ̄, we see that if η = 1 and limz→∞ L(z) = c, for
some constant 0 < c ≤ 1, then χ = c and χ̄ = 1, so the variables are asymptotically dependent

of degree χ = c. If 0 < η < 1 or η = 1 and limz→∞ L(z) = 0, then χ = 0 and the variables

are asymptotically independent of degree χ̄ = 2η − 1. Within the class of asymptotically

independent variables, there are three cases. First, 0 < η < 1
2 means that the variables are

negatively associated, while 1
2 < η ≤ 1 means the variables are positively associated. For

η = 1
2 , the variables are near independent if L(z) 6= 1, and independent if L(z) = 1. So the

degree of dependence between large values of X and Y are determined by η, where larger

values of η indicates stronger association.

Example 3.6.3. If we consider the logistic model, then the joint survivor function Ḡ0(z, z)
is

Ḡ0(z, z) = 1− 2 exp
(
−z−1

)
+ exp

(
−2αz−1

)
, z > 0.

From Example 3.5.8 we have that χ̄ = 0 for α = 1. This implies that η = 1
2 and the slowly

varying function L(z) is given by

L(z) = z2 − 2z2 exp
(
−z−1

)
+ z2 exp

(
−2z−1

)
, z > 0.

When 0 ≤ α < 1, then χ̄ = 1 and hence η = 1. In this case the slowly varying function L(z)
is found to be

L(z) = z − 2z exp
(
−z−1

)
+ z exp

(
−2αz−1

)
, z > 0.

a �



Chapter 4

Estimation of the coe�cient of tail

dependence and the second order

parameter in bivariate extreme value

statistics

We start this chapter with an introduction to a class of functional estimators for the coe�cient

of tail dependence η. For this class of estimators, the asymptotic normality is established

under a second order condition on the joint tail behaviour. Then we introduce a class of

bias corrected estimators and discuss variance optimality. Next we introduce two ways of

estimating the second order parameter τ , which is needed in the bias corrected estimation of

η.

4.1 Estimation of the coe�cient of tail dependence

Let (X,Y ) be a bivariate random vector with distribution function FXY . We can assume,

without loss of generality, that the marginal distributions FX and FY of X and Y , respectively,
are standard Fréchet. If we assume that FXY satis�es (3.37), and set Z := min(X,Y ), then

P (Z > z) = P (X > z, Y > z)

= z
− 1

ηL(z).

This implies that η can be considered as the tail index of a Pareto type model for the random

variable Z and hence it can be estimated with classical estimators for the extreme value index-

like the Hill (Hill, 1975), moment (Dekkers et al., 1989) or maximum likelihood estimator. In

practice, the marginal distributions of a sample of i.i.d. random vectors, (X1, Y1) , . . . (Xn, Yn),
are unknown. So we let F̂X and F̂Y denote the empirical distribution functions of the Xi and

Yi, i = 1, . . . , n and de�ne

Zi := min

− 1

log
(
F̂X (Xi)

) ,− 1

log
(
F̂Y (Yi)

)
 , i = 1, . . . n.

57
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Then by the inverse probability integral transform, we have that the Zi are approximately

distributed as the minimum of two standard Fréchet transformed margins. If we order the Zi,

then we let Z1,n ≤ . . . ≤ Zn,n be the corresponding ascending order statistics.

For a measureable function z : [0, 1] → R we de�ne the functional

TK(z) :=

∫ 1

0
log

z(t)

z(1)
d(tK(t)),

provided the right hand side is de�ned and �nite, and where K is a kernel function. Using

this functional we get a class of estimators of η, proposed in Goegebeur and Guillou (2012),

η̂m(K) : = TK(Qn)

=

∫ 1

0
log

Qn(t)

Qn(1)
d(tK(t)), (4.1)

where Qn(t) := Zn−bmtc,n, 0 < t < n
m is the empirical quantile function. This statistic is in fact

just a kernel statistic similar to the one we used in Chapter 2, if we assume that 0K(0) = 0.
Indeed

η̂m(K) =

m∑
k=1

∫ k
m

k−1
m

(logQn(t)− logQn(1)) d(tK(t))

=

m∑
k=1

(logZn−k+1,n − logZn−m,n)

∫ k
m

k−1
m

d(tK(t))

=

m∑
k=1

m∑
l=k

(
(logZn−l+1,n − logZn−l,n)

(
k

m
K

(
k

m

)
− k − 1

m
K

(
k − 1

m

)))

=

m∑
l=1

(logZn−l+1,n − logZn−l,n)

l∑
k=1

(
k

m
K

(
k

m

)
− k − 1

m
K

(
k − 1

m

))

=
1

m

m∑
l=1

l (logZn−l+1,n − logZn−l,n)K

(
l

m

)
.

Just as in Chapter 2, we need some conditions on the kernel function K in order to establish

the asymptotic normality of η̂m(K).

Assumption 4.1.1. Let K be a function de�ned on (0, 1) such that

(i) K(·) is continuously di�erentiable on (0, 1),

(ii)
∫ 1
0 (− log t)d(tK(t)) = 1,

(iii) There exists M > 0, 0 ≤ r < 1
2 and p < 1 such that |K(t)| ≤ Mt−r and |K ′(t)| ≤

Mt−p−r for t ∈ (0, 1).

The conditions on K are not very restrictive. We illustrate this with an example of a kernel

function which is much like the one presented in Example 2.2.5.
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Example 4.1.2. We consider kernel functions of the formK(t) := (β+1)α+1

Γ(α+1) (− log t)αtβ , where
β ≥ 0 and α ≥ 1 or α = 0 are tuning parameters. This class has as special cases the Hill

estimator K(t) = 1, the log weight-type estimator K(t) = (− log t)α

Γ(α+1) , α ≥ 1 and the weight

functions K(t) = (1 + β)tβ, β ≥ 0 and K(t) = (1 + β)2tβ(− log t), β ≥ 0 proposed in Gomes

et al. (2007). We exclude the case 0 < α < 1 since Assumption 4.1.1 (iii) is violated here.

Lemma 4.1.3. The kernel function K(t) = (β+1)α+1

Γ(α+1) (− log t)αtβ with β ≥ 0 and α ≥ 1 or

α = 0 satis�es Assumption 4.1.1.

A proof of this lemma can be found in Appendix 4.3 a �

In order to prove asymptotic normality of the estimator proposed, we also need an assumption

on the second order tail behavior of FXY .

Assumption 4.1.4. Let (X,Y ) be a random vector with joint distribution function FXY and

continuous marginal distributions FX and FY , respectively. Then

lim
t↓0

P (1−FX(X)<tx,1−FY (Y )<ty)
q(t) − c(x, y)

q1(t)
=: c1(x, y) (4.2)

exists for all x ≥ 0, y ≥ 0 with x+ y > 0, a positive function q → 0 and a function q1 → 0 as

t→ 0, and c1 is a function that is neither a multiple of c, nor a constant. We also require that

c1(x, x) =
x

1
η (xτ−1)

τ and that the convergence is uniform on
{
(x, y) ∈ [0,∞)2|x2 + y2 = 1

}
.

This assumption is similar to the one used in Draisma et al. (2004). It can be shown that

(4.2) implies that q and |q1| are regularly varying at zero with index 1
η and τ ≥ 0, respectively.

The function c is homogeneous of order 1
η , i.e. c(tx, ty) = t

1
η c(x, y). We can without loss of

generality assume that q(t) = P (1−FX(X) < t, 1−FY (Y ) < t), which of course implies that

c(1, 1) = 1. In what follows, we only consider the case where η < 1 and τ > 0. There are

several examples of copulas which satisfy Assumption 4.1.4. We will consider three of these

in section 5.1.

Using Assumption 4.1.1 and 4.1.4 we are able to prove asymptotic normality of the functional

estimator η̂m(K) proposed in (4.1). This is stated more formally in Theorem 4.1.5 below.

Theorem 4.1.5. (Goegebeur and Guillou, 2012) Assume that Assumption 4.1.1 and Assump-

tion 4.1.4 are satis�ed with a function c that is continuously di�erentiable and a function c1
that is continuous. If m→ ∞ such that m

n → 0 and
√
mq1

(
q−1

(
m
n

))
→ λ, �nite, there exists

a standard Brownian motion W̄ , such that

√
m (η̂m(K)− η)

d→ η

∫ 1

0

(
t−(η+1)W̄ (t) + λt−η t

ητ − 1

τ

)
ν(dt),

where ν(dt) := tηd(tK(t)) − K(1)ε1(dt), ε1 denotes the Dirac measure at 1 and K(1) :=
limt↑1K(t). In particular

√
m (η̂m(K)− η) is asymptoticallly normal N (λAB(K),AV(K))

where

AB(K) : =
η

τ

∫ 1

0
(tητ − 1) d(tK(t)), (4.3)

AV(K) : = η2
∫ 1

0

∫ 1

0

min(s, t)

st
d(tK(t))d(sK(s))− η2K2(1). (4.4)



60 Estimation of the coe�cient of tail dependence

A proof of this result requires knowledge about Hadamard di�erentiability and the functional

delta method. These topics would lead us to far, so for a proof of the result we refer to

Goegebeur and Guillou (2012). The bias AB(K) in (4.3) and variance AV(K) in (4.4) can

be simpli�ed, which implies that deriving the mean and variance for a given kernel function

becomes much simpler. These simpli�cations are given in Lemma 4.1.6.

Lemma 4.1.6. Let K be a kernel function satisfying Assumption 4.1.1. The bias AB(K)
given in (4.3) and the variance AV(K) given in (4.4) can also be calculated as

AB(K) = −η2
∫ 1

0
tητK(t)dt, (4.5)

AV(K) = η2
∫ 1

0
K2(t)dt. (4.6)

Proof. From (4.3) we see that

AB(K) =
η

τ

∫ 1

0
tητ+1K ′(t)dt+

η

τ

∫ 1

0
tητK(t)dt− η

τ

∫ 1

0
tK ′(t)dt− η

τ

∫ 1

0
K(t)dt

=: I1 + I2 − I3 − I4.

By applying integration by parts to I1 and I3 we �nd that

I1 =
η

τ
K(1)− η2

∫ 1

0
tητK(t)dt− I2

and

I3 =
η

τ
K(1)− I4.

So AB(K) = −η2
∫ 1
0 t

ητK(t)dt.
Concerning the variance in (4.6) we get from (4.4) that

AV(K) = η2
∫ 1

0

1

s

∫ s

0
d(tK(t))d(sK(s)) + η2

∫ 1

0

∫ 1

s

1

t
d(tK(t))d(sK(s))− η2K2(1)

=: η2I1 + η2I2 − η2K2(1).

By changing the order of integration in I2 we get that I1 = I2, henceAV(K) = 2η2I1−η2K2(1).
Now concerning I1, we �nd that

I1 =

∫ 1

0
sK ′(s)K(s)ds+

∫ 1

0
K2(s)ds

By applying integration by parts we get that∫ 1

0
sK ′(s)K(s)ds =

1

2
K2(1)− 1

2

∫ 1

0
K2(s)ds

hence AV(K) = η2
∫ 1
0 K

2(t)dt.

From direct calculation of (4.5) and (4.6) we get the following Corollary.
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Corollary 4.1.7. Under the assumptions of Theorem 4.1.5, ifK(t) := (β+1)α+1

Γ(α+1) (− log t)αtβ , β ≥
0, α ≥ 1 or α = 0, then

√
m (η̂m(K)− η)

d→ N

(
−λη2 (1 + β)α+1

(β + ητ + 1)α+1
,
(β + 1)2α+2Γ(2α+ 1))

(2β + 1)2α+1Γ2(α+ 1)

)
.

As can be seen from Theorem 4.1.5 the estimator of η we have proposed su�ers from asymptotic

bias, meaning that the center of the normal limit is not zero. This happens even though the

estimator is consistent. It is however relatively easy to get rid of this bias. In order to see

this, let K1 and K2 be two di�erent kernels satisfying Assumption 4.1.1. If α ∈ R, then

Kα(t) := αK1(t) + (1− α)K2(t), 0 < t < 1 (4.7)

also satis�es Assumption 4.1.1. From Theorem 4.1.5 we see that the asymptotic bias resulting

from using this kernel function is

AB(Kα) : =
η

τ

∫ 1

0
(tητ − 1) d(tKα(t))

= αAB(K1) + (1− α)AB(K2).

Under the assumption that AB(K1) 6= AB(K2) we have that

α∗ =
AB(K2)

AB(K2)−AB(K1)
(4.8)

leads to a value of α that eliminates bias, that is AB(Kα∗) = 0. This result is stated more

formally in Proposition 4.1.8.

Proposition 4.1.8. (Goegebeur and Guillou, 2012) Assume that Assumption 4.1.4 is satis�ed

with a function c that is continuously di�erentiable and a function c1 that is continuous.

Furthermore, assume that K1 and K2 are kernel functions satisfying Assumption 4.1.1 with

AB(K1) 6= AB(K2). If m→ ∞ such that m
n → 0 and

√
mq1

(
q−1

(
m
n

))
→ λ, �nite, then

√
m
(
TKα∗ (Qn)− η

) d→ N (0,AV(Kα∗)) .

Note that the choice of α∗ in (4.8) depends on both η and τ , i.e. α∗ = α∗(τ, η). Since these are
unknown parameters they need to be estimated from the data. Replacing the true parameters

η and τ with initial consistent estimators does not change the limiting distribution of the

normalized bias corrected estimator, as can be seen from Proposition 4.1.9.

Proposition 4.1.9. (Goegebeur and Guillou, 2012) Assume (i) that Assumption 4.1.4 is sat-

is�ed with a function c that is continuously di�erentiable and a function c1 that is continuous,
(ii) kernel functions K1 and K2 that satisfy Assumption 4.1.1 with AB(K1) 6= AB(K2) and
that are such that α∗ is continuously di�erentiable with respect to η and τ , and (iii) η̃ and τ̃
are initial consistent estimators for η and τ , respectively. Then, if m → ∞ such that m

n → 0
and

√
mq1

(
q−1

(
m
n

))
→ λ, �nite, we have that

√
m
(
TKα̂∗ (Qn)− η

) d→ N (0,AV(Kα∗)) ,

where α̂∗ := α∗ (η̃, τ̃).
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Next we construct an asymptotically unbiased functional estimator for η with minimum vari-

ance. This construction is inspired by Drees (1998) and Proposition 3 in Gardes and Girard

(2008).

Theorem 4.1.10. (Goegebeur and Guillou, 2012) Let αopt :=
(1+ητ)2

η2τ2
, K1(t) = 1 and K2(t) =

(1 + ητ)tητ . Then Kαopt
(·) de�ned as in (4.7) is the asymptotically unbiased weight function

with minimum variance among unbiased weight functions satisfying Assumption 4.1.1.

Corollary 4.1.11. Under the assumptions of Theorem 4.1.5 and Theorem 4.1.10 we have

that
√
m
(
η̂m
(
Kαopt

)
− η
) d→ N

(
0, η2

(1 + ητ)2

η2τ2

)
.

4.2 Estimation of the second order parameter

Estimation of the second order parameter is important because a consistent estimate of this

parameter is required in order to obtain a bias corrected estimate of η. In order to create

consistent estimators of τ , we start by de�ning the function

S(x, y) :=
n∑

i=1

1 {Xi ≥ x, Yi ≥ y} , (4.9)

where 1{A} denotes the indicator funtion of the event A. Using this function we introduce

the estimtor τ̂k (x, y, η̃) for τ , de�ned as

τ̂k (x, y, η̃) := − 1

log 2
log

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m1

)a

− 2
a
η̃

S

(
X

n−b kx
2 c+1,n

,Y
n−b ky

2 c+1,n

)
m1

a

(
S(Xn−b2kxc+1,n,Yn−b2kyc+1,n)

m2

)a

− 2
a
η̃

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m2

)a

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.10)

where a 6= 0, k := ne−(logn)δ , 0 < δ < 1,m1 :=
⌊
nq
(
k
n

)⌋
,m2 :=

⌊
nq
(
2k
n

)⌋
, and η̃ is an initial

consistent estimator for η. Our estimator τ̂ is consistent as can be seen in Proposition 4.2.1.

Proposition 4.2.1. Assume that Assumption 4.1.4 is satis�ed with a function c that has

continuous �rst order partial derivatives and a continuous function c1. If n → ∞, k =

ne−(log n)δ , 0 < δ < 1,m1 =
⌊
nq
(
k
n

)⌋
and m2 =

⌊
nq
(
2k
n

)⌋
, then τ̂k (x, y, η)

P→ τ . This result

continues to hold when η is replaced by a consistent estimator η̃ that sats�es

η̃ − η

q1
(
k
n

) P→ 0.

Proof. From Lemma 6.1 in Draisma et al. (2004) and following the method of proof in Drees

(1998) we get that

S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)
m1

= c(x, y)+q1

(
k

n

)
c1(x, y) (1 + oP (1))+

W (x, y)
√
m1

+oP

(
1

√
m1

)
,
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where W is a Gaussian process with mean zero and covariance structure given by

E (W (x1, y1)W (x2, y2)) = c (x1 ∧ x2, y1 ∧ y2) .

By making a Taylor series expansion we �nd that(
S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)
m1

)a

=ca(x, y) + aca−1(x, y)

(
q1

(
k

n

)
c1(x, y) (1 + oP (1))

+
W (x, y)
√
m1

+ oP

(
1

√
m1

))
. (4.11)

Hence(
S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)
m1

)a

− 2
− a

η

S
(
Xn−b kx

2 c+1,n, Yn−b ky
2 c+1,n

)
m1

a

= aca−1(x, y)

(
q1

(
k

n

)
c1(x, y) (1 + oP (1)) +

W (x, y)
√
m1

+ oP

(
1

√
m1

))
− 2

− a
η aca−1

(x
2
,
y

2

)(
q1

(
k

n

)
c1

(x
2
,
y

2

)
(1 + oP (1)) +

W
(
x
2 ,

y
2

)
√
m1

+ oP

(
1

√
m1

))
.

For the k sequence we have chosen

q

(
k

n

)
= e

− 1
η
(log n)δ

lq

(
e−(log n)δ

)
and

q1

(
k

n

)
= e−τ(log n)δ lq1

(
e−(logn)δ

)
for some slowly varying functions lq and lq1 . This implies that

√
m1q1

(
k

n

)
=

√⌊
ne

− 1
η
(log n)δ

lq
(
e−(logn)δ

)⌋
e−τ(log n)δ lq1

(
e−(logn)δ

)
≥

√
ne

−
(

1
2η

+τ
)
(logn)δ

√
lq
(
e−(logn)δ

)
lq1

(
e−(logn)δ

)
− e−τ(logn)δ lq1

(
e−(log n)δ

)
→ ∞,

for n→ ∞. Thus(
S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)
m1

)a

− 2
− a

η

S
(
Xn−b kx

2 c+1,n, Yn−b ky
2 c+1,n

)
m1

a

= aca−1(x, y)q1

(
k

n

)
c1(x, y) (1 + oP (1))

− 2
− a

η aca−1
(x
2
,
y

2

)
q1

(
k

n

)
c1

(x
2
,
y

2

)
(1 + oP (1))

= q1

(
k

n

)
a
(
ca−1(x, y)c1(x, y)− 2

− a
η ca−1

(x
2
,
y

2

)
c1

(x
2
,
y

2

)
+ oP (1)

)
. (4.12)
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Similarly(
S
(
Xn−b2kxc+1,n, Yn−b2kyc+1,n

)
m2

)a

− 2
− a

η

(
S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)
m2

)a

= q1

(
2k

n

)
a
(
ca−1(x, y)c1(x, y)− 2

− a
η ca−1

(x
2
,
y

2

)
c1

(x
2
,
y

2

)
+ oP (1)

)
. (4.13)

By the regular variation of |q1| we �nd that

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m1

)a

− 2
−a

η

S

(
X

n−b kx
2 c+1,n

,Y
n−b ky

2 c+1,n

)
m1

a

(
S(Xn−b2kxc+1,n,Yn−b2kyc+1,n)

m2

)a

− 2
− a

η

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m2

)a
P→ 2−τ .

Concerning the second part of the proof, we have from a �rst order Taylor series expansion

that

τ̂ (x, y, η̃) = τ̂(x, y, η) +
dτ̂(x, y, η)

dη

∣∣∣∣
η∗

(η̃ − η) ,

where η∗ is a random value between η and η̃. The term dτ̂(x,y,η)
dη

∣∣∣
η∗

is easily found to be

dτ̂(x, y, η)

dη

∣∣∣∣
η∗

=
a

η∗2
2

a
η∗



S

(
X

n−b kx
2 c+1,n

,Y
n−b ky

2 c+1,n

)
m1

a

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m1

)a

− 2
− a

η∗

S

(
X

n−b kx
2 c+1,n

,Y
n−b ky

2 c+1,n

)
m1

a

−

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m1

)a

(
S(Xn−b2kxc+1,n,Yn−b2kyc+1,n)

m2

)a

− 2
− a

η∗

(
S(Xn−bkxc+1,n,Yn−bkyc+1,n)

m2

)a

 .

By inserting the terms (4.11), (4.12) and (4.13) into this expression it follows that

dτ̂(x, y, η)

dη

∣∣∣∣
η∗

= OP

(
1

q1
(
k
n

)) ,
and hence the result follows.

Even though we in (4.10) have a consistent estimator for τ , there still exists some unresolved

problems with this estimator. In practice we do not know the function q, so we can not

determine the constantsm1 andm2. A way to partially solve this, is to note that the estimator

in (4.10) also can be written as

τ̂k (x, y, η̃) := − 1

log 2
log

∣∣∣∣∣∣∣
(
m2

m1

)a S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)a − 2
a
η̃S
(
Xn−b kx

2 c+1,n, Yn−b ky
2 c+1,n

)a
S
(
Xn−b2kxc+1,n, Yn−b2kyc+1,n

)a − 2
a
η̃S
(
Xn−bkxc+1,n, Yn−bkyc+1,n

)a
∣∣∣∣∣∣∣ .
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Since q is a function of regular variation with index 1
η , it is a function of the form q(t) = lq(t)t

1
η ,

where lq is a slowly varying function. Thus it seems natural to approximate m := m2
m1

by

m̂ := 2
1
η̃ , k = 1, . . . , n,

where η̃ is a consistent estimator for η. In the estimator proposed in (4.10) we also have to use

an estimate for η which would be better to avoid. There is however a way of eliminating the

necessity of knowing the function q and using an estimate for η as can be seen from another

estimator of τ we propose. This estimator is also based on the function S de�ned in (4.9),

and is given by

τ̃k(z) =
1

log 2
log

∣∣∣∣b(a+ l)

a(b+ l)

Ξ1(z, a, l)

Ξ2(z, b, l)

∣∣∣∣ , (4.14)

where

Ξ1(z, a, l) :=

(
S(Xn−bkzc+1,n,Yn−bkzc+1,n)
S(Xn−b2kzc+1,n,Yn−b2kzc+1,n)

)a

−
(

S(Xn−b2kzc+1,n,Yn−b2kzc+1,n)
S(Xn−b4kzc+1,n,Yn−b4kzc+1,n)

)a

(
S(Xn−b2kzc+1,n,Yn−b2kzc+1,n)
S(Xn−b4kzc+1,n,Yn−b4kzc+1,n)

)a+l

−
(

S(Xn−b4kzc+1,n,Yn−b4kzc+1,n)
S(Xn−b8kzc+1,n,Yn−b8kzc+1,n)

)a+l
, a, a+ l 6= 0

and

Ξ2(z, b, l) :=

(
S(Xn−bkzc+1,n,Yn−bkzc+1,n)
S(Xn−b2kzc+1,n,Yn−b2kzc+1,n)

)b

−
(

S(Xn−b2kzc+1,n,Yn−b2kzc+1,n)
S(Xn−b4kzc+1,n,Yn−b4kzc+1,n)

)b

(
S(Xn−b4kzc+1,n,Yn−b4kzc+1,n)
S(Xn−b8kzc+1,n,Yn−b8kzc+1,n)
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−
(

S(Xn−b8kzc+1,n,Yn−b8kzc+1,n)
S(Xn−b16kzc+1,n,Yn−b16kzc+1,n)

)b+l
, b, b+ l 6= 0.

This estimator is based on the same ideas as was used to construct the ρ estimator presented

in Section 2.3.

Proposition 4.2.2. Assume that Assumption 4.1.4 is satis�ed with a function c that has

continuous �rst order partial derivatives and a continuous function c1. If k, n→ ∞ such that
k
n → 0 and

√
m1q1

(
k
n

)
→ ∞, for m1 de�ned as in Proposition 4.2.1, then τ̃k (z)

P→ τ .

Proof. Let

T1 :=
S
(
Xn−bkzc+1,n, Yn−bkzc+1,n

)
S
(
Xn−b2kzc+1,n, Yn−b2kzc+1,n

) .
Then
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 c(z, z) + q1
(
k
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)
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W (z,z)√
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+ oP
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1√
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(
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W (2z,2z)√
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+ oP

(
1√
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)
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and since
√
m1q1

(
k
n

)
→ ∞, it follows that

T a
1 =

(
c(z, z) + q1

(
k
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)
c1(z, z) (1 + oP (1))

c(2z, 2z) + q1
(
k
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)
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)a

.
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By using Assumption 4.1.4 and making a Taylor series expansion we get

T a
1 = 2

− a
η + a2

− a
η q1

(
k

n

)
zτ − (2z)τ

τ
(1 + oP (1)) .

Similarly, it follows that
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(
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η q1
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τ
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and

T a
3 : =

(
S
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)
S
(
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η q1
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τ
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Hence
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η q1
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n

)
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We have that
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η zτ
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τ

and
T a
2 − T a

3

q1
(
k
n

) P→ a2
− a

η 2τzτ
(1− 2τ )2

τ

so
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Similarly we �nd for
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that

Ξ2(z, b, l) =
T b
1 − T b

2

T b+l
3 − T b+l

4

P→ b

b+ l
2

l
η 4−τ .

Hence
Ξ1(z, a, l)

Ξ2(z, b, l)

P→ a(b+ l)

b(a+ l)
2τ .

4.3 Appendix

4.3.1 Proof of Lemma 4.1.3

(i) We see that

d

dt
K(t) =

(β + 1)α+1β

Γ(α+ 1)
(− log t)αtβ−1 − (β + 1)α+1α

Γ(α+ 1)
tβ−1(− log t)α−1

is continuous on (0, 1), so (i) is satis�ed.

(ii) Concerning the second condition, we have that∫ 1

0
(− log t)d(tK(t)) =

(1 + β)α+2

Γ(α+ 1)

∫ 1

0
(− log t)α+1tβdt− (1 + β)α+1α

Γ(α+ 1)

∫ 1

0
(− log t)αtβdt

=
1

Γ(α+ 1)

∫ ∞

0
zα+1 exp(−z)dz − α

Γ(α+ 1)

∫ ∞

0
zα exp(−z)dz

= 1.

(iii) Let α ≥ 1 and β ≥ 0. The inequality
∣∣∣ (β+1)α+1

Γ(α+1) (− log t)αtβ
∣∣∣ ≤ Mt−r can easily be

seen to be satis�ed for all t if r > 0 and M ≥ (β+1)α+1α
rΓ(α) . Similarly, the inequality∣∣∣ (β+1)α+1β

Γ(α+1) (− log t)αtβ−1 − (β+1)α+1α
Γ(α+1) tβ−1(− log t)α−1

∣∣∣ ≤ Mt−p−r is satis�ed when p +

r > 1 and M ≥ max
(
(β+1)α+1α

Γ(α) , (β+1)α+1α(β+α−2
(p+r)Γ(α)

)
.

When α = 0 and β ≥ 0 we have that the inequality
∣∣(β + 1)tβ

∣∣ ≤ Mt−r is satis�ed for

any 0 ≤ r < 1
2 andM ≥ β+1. Also, the inequality

∣∣(β + 1)βtβ−1
∣∣ ≤Mt−p−r is satis�ed

for all t if p+ r > 1 and M ≥ β(β + 1).



Chapter 5

Simulation study

Simulation experiments play an important role in testing how an estimator performs. This

is because simulating some data allows us to test the �nite sample size behaviour of the

estimator on data where we know the true value of the parameter. We start this chapter

with an introduction to Archimedian copulas and present an algorithm for generating random

vectors from Archimedian copulas. Then we present three examples of Archimedian copulas

for which we show that they satisfy Assumption 4.1.4 and derive the true values of the �rst

order parameter η and the second order parameter τ . We then generate data from these

copulas and examine how well the two estimators τ̃k and τ̂k perform in the estimation of τ ,
and how well the estimator η̂m performs in the estimation of η. In the estimation of η we use

bias correction. Finally we examine whether or not the estimators χ̂(u) and ˆ̄χ(u) can be used

to estimate the values of χ and χ̄, if we choose a large threshold u.

5.1 Copula examples and simulation of data

We start this section with an introduction to a certain class of copulas known as Archimedian

copulas.

De�nition 5.1.1. Let φ be a continuous, strictly decreasing function from [0, 1] → [0,∞]
such that φ(1) = 0. The pseudo-inverse of φ is the function φ[−1] : [0,∞] → [0, 1] given by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

(5.1)

From this de�nition we can construct the class of Archimedian copulas. This is done in

Theorem 5.1.2.

Theorem 5.1.2. (Alsina et al., 2005) Let φ be a continuous, strictly decreasing function from

[0, 1] → [0,∞] such that φ(1) = 0, and let φ[−1] be the pseudo-inverse of φ de�ned by (5.1).

Then the function C : [0, 1]2 → [0, 1] given by

C(u, v) = φ[−1](φ(u) + φ(v)) (5.2)

is a copula if and only if φ is convex.

68



Copula examples and simulation of data 69

The function φ is called the generator function, since it is used to generate a copula.

De�nition 5.1.3. For a convex, continuous and strictly decreasing function φ : [0, 1] → [0,∞],
we de�ne the pseudo inverse of φ′ as the function φ′[−1] : [−∞, 0] → [0, 1] given by

φ′[−1](t) =

{
φ′(−1)(t), φ′(0) ≤ t ≤ φ′(1),
0, otherwise.

(5.3)

It is straightforward to simulate data from an Archimedian copula as can be seen from Algo-

rithm 5.1.4.

Algorithm 5.1.4. (Genest and MacKay, 1986b) Algorithm for generating a pair of uniform

(0, 1) random variates with a copula that has generator function φ:

(i) Generate two independent uniform (0, 1) variates u and t.

(ii) Set w = φ′[−1]
(
φ′(u)

t

)
.

(iii) Set v = φ[−1](φ(w)− φ(u)).

(iv) The desired pair is (u, v).

Theorem 5.1.5. If φ is a function that satis�es the assumptions in Theorem 5.1.2, then

Algorithm 5.1.4 produces two random variates from the copula given in (5.2).

Proof. Let U, T ∼ U(0, 1) be independent and consider

P (U ≤ u, V ≤ v) = P ((U, T ) ∈ A),

where

A :=

{
(z, t) : z ≤ u and φ[−1]

(
φ

(
φ′[−1]

(
φ′(z)

t

))
− φ(z)

)
≤ v

}
.

We need to show that P (U ≤ u, V ≤ v) = C(u, v). Using that φ is a strictly decreasing

function we �nd that

A =

{
(z, t) : z ≤ u and φ

(
φ′[−1]

(
φ′(z)

t

))
≥ φ(v) + φ(z)

}
.

The constraint φ
(
φ′[−1]

(
φ′(z)
t

))
≥ φ(v) + φ(z) implies that φ(0) ≥ φ(v) + φ(z). Hence

z ≥ φ−1(φ(0)− φ(v)) and thus

A =

{
(z, t) : φ−1(φ(0)− φ(v)) ≤ z ≤ u and φ

(
φ′[−1]

(
φ′(z)

t

))
≥ φ(v) + φ(z)

}
.

If u < φ−1(φ(0) − φ(v)) then A = ∅ which means that P (U ≤ u, V ≤ v) = 0. Otherwise it

follows that

A =

{
(z, t) : φ−1(φ(0)− φ(v)) ≤ z ≤ u and t ≤ φ′(z)

φ′ (φ−1(φ(v) + φ(z)))

}
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and hence

P ((U, T ) ∈ A) =

∫ u

φ−1(φ(0)−φ(v))

∫ φ′(z)
φ′(φ−1(φ(v)+φ(z)))

0
1dtdz

=

∫ u

φ−1(φ(0)−φ(v))

φ′(z)

φ′ (φ−1(φ(v) + φ(z)))
dz.

Since
∂

∂z
C(z, v) =

φ′(z)

φ′ (φ−1(φ(v) + φ(z)))

for z > φ−1(φ(0)− φ(v)) we get that

P ((U, T ) ∈ A) = C(u, v)− C
(
φ−1(φ(0)− φ(v)), v

)
.

Clearly

C
(
φ−1(φ(0)− φ(v)), v

)
= φ[−1]

(
φ
(
φ−1(φ(0)− φ(v))

)
+ φ(v)

)
= 0,

which �nishes the proof.

One of the examples of Archimedian copulas we will consider which satis�es Assumption 4.1.4,

has a singular component, i.e. it is not absolutely continuous. In Theorem 5.1.6 we present a

nice description of the singular component of an Archimedian copula.

Theorem 5.1.6. (Genest and MacKay, 1986a) The copula C(u, v) generated by a generator

function φ has a singular component if and only if φ(0)
φ′(0) 6= 0. In that case, φ(U)+φ(V ) = φ(0)

with probability − φ(0)
φ′(0) .

Next we present three examples of copulas that are Archimedian and satisfy Assumption

4.1.4. Since we restrict ourselves to bivariate distribution functions with continuous margins

in Assumption 4.1.4, it su�ces to verify that the copulas satisfy the assumption. This follows

because we can transform the margins to any other continuous distribution without altering

the dependence structure. In all three examples, we assume that the marginal distributions

are continuous.

Example 5.1.7. The Ali-Mikhail-Haq copula has generator function

φ(t) = log

(
1− (1− θ)t

t

)
, −1 ≤ θ ≤ 1, 0 ≤ t ≤ 1

and hence has copula function given by

C(u, v) :=
uv

1− θ(1− u)(1− v)
, −1 ≤ θ ≤ 1, 0 ≤ u, v ≤ 1.

From this we �nd that the survival copula is

C̄(u, v) := 1− u− v +
uv

1− θ(1− u)(1− v)
, −1 ≤ θ ≤ 1, 0 ≤ u, v ≤ 1.
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If θ = 0, then the Ali-Mikhail-Haq copula is just the product copula. This copula does not

have any second order behaviour, so we have to exclude the case θ = 0.
Since FX and FY are continuous, we have that FX(X) and FY (Y ) are uniformly distributed.

This implies that

P (1− FX(X) < tx, 1− FY (Y ) < ty) = C̄(1− tx, 1− ty)

= t2xy
1 + θ − θt(x+ y)

1− θt2xy
, 0 < tx, ty < 1.

By making a Taylor series expansion of 1
1−z around 0 we �nd that

P (1− FX(X) < tx, 1− FY (Y ) < ty) =t2xy
(
1 + θ − θt(x+ y)

+ (1 + θ)θt2xy − θ2t3xy(x+ y) +O
(
t4
) )
.

We have to consider the cases θ = −1 and −1 < θ < 1 seperately. In the case −1 < θ ≤ 1 we

get
P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

1 + θ − θt(x+ y) +O
(
t2
)

1 + θ − 2θt+O (t2)
,

which by a Taylor series expansion is found to be

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

(
1− t

θ

1 + θ
(x+ y − 2) +O(t2)

)
.

From this we easily �nd that Assumption 4.1.4 is satis�ed with c(x, y) = xy, η = 1
2 , q1(t) =

−2 θ
(θ+1) t, τ = 1 and c1(x, y) =

1
2xy(x+ y − 2).

In the case where θ = −1 we �nd that

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

x+ y − t2xy(x+ y) +O
(
t3
)

2− 2t2 +O (t3)

By making a Taylor series expansion it follows that

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

(
x+ y

2
− t2

xy(x+ y)− (x+ y)

2
+O(t3)

)
.

Hence, Assumption 4.1.4 is satis�ed with c(x, y) = xy(x+y)
2 , η = 1

3 , q1(t) = −2t2, τ = 2 and

c1(x, y) =
1
4xy(xy(x+ y)− (x+ y)).

a �

Example 5.1.8. The Gumbel-Hougaard copula has generator function

φ(t) = log (1− θ log(t)) , 0 ≤ θ ≤ 1, 0 ≤ t ≤ 1

and hence has a copula function given by

C(u, v) = uv exp(−θ log u log v), 0 < θ ≤ 1, 0 ≤ u, v ≤ 1,

The survival copula is easily found to be

C̄(u, v) = 1− u− v + uv exp(−θ log u log v).
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Assuming that FX and FY are continuous it follows that

P (1− FX(X) < tx, 1− FY (Y ) < ty) =C̄(1− tx, 1− ty)

=− 1 + tx+ ty + (1− tx)(1− ty)

· exp(−θ log(1− tx) log(1− ty)).

If we expand this through a Taylor series, we get

P (1− FX(X) < tx, 1− FY (Y ) < ty) = t2xy

(
1− θ +

1

2
θt(x+ y)

+ θ

(
x2 + y2

6
− 1

4
xy +

1

2
θxy

)
t2 +O

(
t3
))

.

We start by considering the case 0 < θ < 1, in which case

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

(
1 +

θ

1− θ

1

2
(x+ y − 2)t+O

(
t2
))

is obtained through a Taylor series expansion. From this, we �nd that Assumption 4.1.4 is

satis�ed with c(x, y) = xy, η = 1
2 , q1(t) =

θ
1−θ t, τ = 1 and c1(x, y) =

1
2xy(x+ y − 2).

In the case where θ = 1 we get

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

(
x+ y

2
+

(
x2 + y2

6
+

1

4
xy − 7x+ 7y

24

)
t+O

(
t2
))

.

Hence Assumption 4.1.4 is satis�ed with c(x, y) = xy x+y
2 , η = 1

3 , q1(t) = 7
12 t, τ = 1 and

c1(x, y) =
1
14xy(4x

2 + 4y2 + 6xy − 7x− 7y).
a �

Example 5.1.9. The next copula we consider has generator function

φ(t) =
1− t

1 + (θ − 1)t

and is given by

C(u, v) = max

(
θ2uv − (1− u)(1− v)

θ2 − (θ − 1)2(1− u)(1− v)
, 0

)
, 1 ≤ θ <∞, 0 ≤ u, v ≤ 1.

We will refer to this copula as Nelsen (4.2.8) because our only reference to this copula is from

(Nelsen, 2006). From this it follows that the survival copula is

C̄(u, v) = 1− u− v +max

(
θ2uv − (1− u)(1− v)

θ2 − (θ − 1)2(1− u)(1− v)
, 0

)
.

This is an example of a distribution which is not absoutely continuous, even though it has

continuous margins. In fact it follows from Theorem 5.1.6 that a point (U, V ) has probability
1
θ of lying on the arc de�ned by (θ − 1)2uv + 2(θ − 1)uv + u+ v − 1 = 0.
In the case where θ = 1, the copula reduces to C(u, v) = max(u + v − 1, 0), which does not
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have any second order behaviour, and hence we have to exclude this case. Assuming that FX

and FY are continuous it follows that

P (1− FX(X) < tx, 1− FY (Y ) < ty) =C̄(1− tx, 1− ty)

=− 1 + tx+ ty +max

(
θ2(1− tx)(1− ty)− t2xy

θ2 − (θ − 1)2t2xy
, 0

)
.

Since we are only interested in what happens when t→ 0, we can assume that

P (1− FX(X) < tx, 1− FY (Y ) < ty) = −1 + tx+ ty +
θ2(1− tx)(1− ty)− t2xy

θ2 − (θ − 1)2t2xy
.

If we expand this through a Taylor series, we get

P (1− FX(X) < tx, 1− FY (Y ) < ty) = t2xy

(
2
θ − 1

θ
− (θ − 1)2

θ2
(x+ y)t+O

(
t2
))

,

and hence

P (1− FX(X) < tx, 1− FY (Y ) < ty)

P (1− FX(X) < t, 1− FY (Y ) < t)
= xy

(
1− θ − 1

θ

1

2
(x+ y − 2)t+O

(
t2
))

is obtained through a Taylor series expansion. From this, we �nd that Assumption 4.1.4 is

satis�ed with c(x, y) = xy, η = 1
2 , q1(t) = − θ−1

θ t, τ = 1 and c1(x, y) =
1
2xy(x+ y − 2).

a �

5.2 Estimation of the second order parameter τ

Using the copulas discussed in Example 5.1.7, Example 5.1.8 and Example 5.1.9 we examine

the �nite sample size behaviour of the estimators we have proposed in Chapter 4. For each

copula we generated 1000 samples of size 5000 and 50000, and computed the estimators τ̃k
and τ̂k for k = 10, 20, . . . , 5000 and k = 100, 200, . . . , 50000, respectively. For each value of k,
the mean and the mean squared error is estimated. The estimation of τ does not depend on

the marginal distributions but only on the copula. This means that there is no need to try the

estimation of τ using di�erent marginal distributions. Concerning the estimator τ̂k (x, y, η̃)
we start by �nding an estimate for η. This is done using the bias corrected weight function

described in Theorem 4.1.10 where we �x the value ητ = 1. We then use this value to estimate

m1 and m2 as discussed in Chapter 4. We also �x the values of x and y at x = y = 1
8 . For the

estimator τ̃ we �x the value of z at z = 1
16 . The choice of the value of the tuning parameter

a in τ̂k is found to give the best results when a is chosen small. We have therefore chosen to

present the results for a = 0.01, 0.02, 0.03, 0.04. The estimator τ̃k also performs the best when

a, b and l are chosen small.

The estimators τ̂k and τ̃k are examined using the Ali-Mikhail-Haq copula in Figure 5.1 - Figure

5.4, using the Gumbel-Hougaard copula in Figure 5.5 - Figure 5.8 and using the Nelsen (4.2.8)

copula in Figure 5.9 - Figure 5.12. From these Figures we can draw the following conclusions.

(i) The estimator τ̃k has some severe problems with bias and as a result of this, the MSE

of this estimator is also very high. The estimator τ̂k does not have anywhere near the
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same bias issues as τ̃k. In most of the cases we have explored this estimator has a stable

region where there is a relatively small bias. The estimator does however have no stable

region in the case of the Gumbel-Hougaard copula with θ = 1 and the case of the Nelsen

(4.2.8) copula with θ = 3
2 . In the Gumbel-Hougaard case this might be because we are

in the limiting case of the copula, and in Nelsen (4.2.8) case it might be because a very

large portion of the data lie in the singular component of the copula.

(ii) When sample size increases from 5000 to 50000 there is a clear improvement of the

estimators performance. In some of the cases τ̃k reduces its bias and has a stable region,

but the MSE still remains quite high. For τ̂k we see that the problematic case of the

Nelsen (4.2.8) copula with θ = 3
2 the estimation is improved and that there is a small

stable region.

(iii) Concerning the estimator τ̂k, the stable regions, with no or little bias does not always

contain the same values of k. Furthermore, the stable regions does on some occasions

have a fairly large MSE, meaning that the variance is very high. This causes some

problems, since this means that it is more di�cult to choose a region for k in a situation

where real data is used.

5.3 Estimation of the �rst order parameter η

For the copulas considered in Example 5.1.7, Example 5.1.8 and Example 5.1.9 we generated

1000 samples of size 5000 and 50000, and computed TKαopt
for m = 10, 20, . . . , 5000 and

m = 100, 200, . . . , 50000, respectively. In Figures 5.13 till 5.18 we show the sample mean (left)

and the empirical mean squared error (right) as a function of m with initial estimates used

for ητ (solid), ητ = 1 (dashed) and the true value of ητ (dotted). In the case where initial

estimates are used for the value of ητ , the estimate of τ is the median of the estimator τ̂k
with k =

⌊
n0.95

⌋
,
⌊
n0.95

⌋
+ 1, . . . ,

⌊
n0.975

⌋
. The estimate of η that is used is the median of

TKαopt
with ητ = 1 and m = 10, 11, . . . , n4 . If the estimate of ητ happens to be negative,

then the absolute value is used. From the simulation results we are able to draw the following

conclusions.

(i) The estimator TKαopt
with initial estimates of η and τ has in general a performance

which is far worse than using the true value of η and τ or using ητ = 1. The cause of
this is probably the negative bias of the estimator τ̂k. When we get an estimate of τ
which is close to zero, then the estimator TKαopt

has a large variance, which causes the

estimate of η to be very erratic.

(ii) The estimator TKαopt
exhibit similar behaviour when true values of η and τ are used

and when ητ = 1, both in terms of bias and MSE. This implies that it is reasonable in

practice to use ητ = 1 instead of estimating τ for the bias corrected estimation of η.

5.4 Estimation of the dependence measures χ and χ̄

Using the copulas in Example 5.1.7, Example 5.1.8 and Example 5.1.9 we generated 1000

samples of size 5000 and 50000. For each copula we estimated the values of χ(u) and χ̄(u)
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for u = 0, 0.002, 0.004, . . . , 1 using the estimators in (3.29) and (3.31), respectively. This was

done using the R-package �POT� by Ribatet (2006). In Figures 5.19 till Figure 5.21 we show

the sample mean of χ̂(u) and ˆ̄χ(u) for the sample size of 5000 (left) and 50000 (right). The

true values of χ and χ̄ are shown with horizontal lines. We use the plots of the sample mean

of χ̂(u) and ˆ̄χ(u) to examine how well estimates of the functions χ(u) and χ̄(u) can be used

to obtain estimates of χ and χ̄, if the value of u is chosen wisely. From the results, we are

able to draw the following conclusions.

(i) The estimator χ̂(u) always gets very close to the true value of χ for large values of u.
However, this might be because χ = 0 for all the examples and χ̂(u) = 0 for u large

enough. But it seems that u has to be chosen fairly large, if the value of χ̂(u) should be

close to the true value of χ. The estimator ˆ̄χ(u) converges in all cases to −1, when u
tends to 1. For values of u, that are smaller than 1 it seems that we get an estimate of

χ̄, which also su�ers from some bias.

(ii) For the estimator χ̂(u) there is very little di�erence between a sample size of 5000 and

50000. The estimator ˆ̄χ(u) behaves better when the sample size is large, since the

degeneracy towards the value −1 happens later. The bias, is however roughly the same

for the two sample sizes before the degeneracy occurs.

(iii) The estimation of χ̄ through ˆ̄χ(u) seems to be worse than estimating η with the bias

corrected estimator for η, and then calculating χ̄ through the relation χ̄ = 2η − 1.
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Figure 5.1: Simulation of τ̂k with sample size of 5000 for di�erent values of k for the Ali-

Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black,
dashed), a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid
line is the true value of τ .
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Figure 5.2: Simulation of τ̂k with sample size of 50000 for di�erent values of k for the Ali-

Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black,
dashed), a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid
line is the true value of τ .
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Figure 5.3: Simulation of τ̃k with sample size of 5000 for di�erent values of k for the Ali-

Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01
(black, solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,
dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.4: Simulation of τ̃k with sample size of 50000 for di�erent values of k for the Ali-

Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01
(black, solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,
dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.5: Simulation of τ̂k with sample size of 5000 for di�erent values of k for the Gumbel-

Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black,
dashed), a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid
line is the true value of τ .
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Figure 5.6: Simulation of τ̂k with sample size of 50000 for di�erent values of k for the Gumbel-
Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black,
dashed), a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid
line is the true value of τ .
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Figure 5.7: Simulation of τ̃k with sample size of 5000 for di�erent values of k for the Gumbel-

Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01
(black, solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,
dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.8: Simulation of τ̃k with sample size of 50000 for di�erent values of k for the Gumbel-
Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01
(black, solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,
dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.9: Simulation of τ̂k with sample size of 5000 for di�erent values of k for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On the

left is the sample mean of the estimator and on the right is the empirical mean squared error.

The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black, dashed),

a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid line is

the true value of τ .
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Figure 5.10: Simulation of τ̂k with sample size of 50000 for di�erent values of k for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On the

left is the sample mean of the estimator and on the right is the empirical mean squared error.

The tuning parameter a in the model is a = 0.01 (black, solid), a = 0.02 (black, dashed),

a = 0.03 (black, dashed-dotted), a = 0.04 (black, dotted). The horizontal black solid line is

the true value of τ .
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Figure 5.11: Simulation of τ̃k with sample size of 5000 for di�erent values of k for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On

the left is the sample mean of the estimator and on the right is the empirical mean squared

error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01 (black,

solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,

dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.12: Simulation of τ̃k with sample size of 50000 for di�erent values of k for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On

the left is the sample mean of the estimator and on the right is the empirical mean squared

error. The tuning parameters a, b and l in the model are a = 0.01, b = 0.02, l = 0.01 (black,

solid), a = 0.01, b = 0.02, l = 0.02 (black, dashed), a = 0.02, b = 0.01, l = 0.01 (black,

dashed-dotted), a = 0.02, b = 0.01, l = 0.02 (black, dotted), a = b = 0.01, l = 0 (blue, solid),

a = b = 0.02, l = 0 (blue, dashed), a = b = 0.03, l = 0 (blue, dashed-dotted), a = b = 0.04,
l = 0 (black, dotted). The horizontal black solid line is the true value of τ .
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Figure 5.13: Simulation of η̂m with sample size of 5000 for di�erent values of m for the Ali-

Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1 (row

4). On the left is the sample mean of the estimator and on the right is the empirical mean

squared error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1
(dashed), true values of η and τ are used (dotted). The horizontal solid line is the true value

of η.
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Figure 5.14: Simulation of η̂m with sample size of 50000 for di�erent values of m for the

Ali-Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row 2), θ = 0.5 (row 3) and θ = 1
(row 4). On the left is the sample mean of the estimator and on the right is the empirical

mean squared error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1
(dashed), true values of η and τ are used (dotted). The horizontal solid line is the true value

of η.
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Figure 5.15: Simulation of η̂m with sample size of 5000 for di�erent values of m for the

Gumbel-Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1
(row 4). On the left is the sample mean of the estimator and on the right is the empirical

mean squared error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1
(dashed), true values of η and τ are used (dotted). The horizontal solid line is the true value

of η.
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Figure 5.16: Simulation of η̂m with sample size of 50000 for di�erent values of m for the

Gumbel-Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row 2), θ = 0.75 (row 3) and θ = 1
(row 4). On the left is the sample mean of the estimator and on the right is the empirical

mean squared error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1
(dashed), true values of η and τ are used (dotted). The horizontal solid line is the true value

of η.
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Figure 5.17: Simulation of η̂m with sample size of 5000 for di�erent values of m for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On

the left is the sample mean of the estimator and on the right is the empirical mean squared

error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1 (dashed),

true values of η and τ are used (dotted). The horizontal solid line is the true value of η.
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Figure 5.18: Simulation of η̂m with sample size of 50000 for di�erent values ofm for the Nelsen

(4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2), θ = 5 (row 3) and θ = 10 (row 4). On

the left is the sample mean of the estimator and on the right is the empirical mean squared

error. The values of ητ are: initial estimates of η and τ are used (solid), ητ = 1 (dashed),

true values of η and τ are used (dotted). The horizontal solid line is the true value of η.
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Figure 5.19: Simulation of χ̂(u) (solid line) and ˆ̄χ(u) (dashed line) with a sample size of 5000
(left) and 50000 (right) for the Ali-Mikhail-Haq copula with θ = −1 (row 1), θ = −0.5 (row

2), θ = 0.5 (row 3) and θ = 1 (row 4). The horizontal solid line is the true value of χ, while
the horizontal dashed line is the true value of χ̄. In the cases where χ = χ̄, the true value of
this is plotted using a horizontal solid line.



Estimation of the dependence measures χ and χ̄ 95

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

M
ea

n 
of

 χ
(u

) a
nd

 χ
(u

)

Figure 5.20: Simulation of χ̂(u) (solid line) and ˆ̄χ(u) (dashed line) with a sample size of 5000
(left) and 50000 (right) for the Gumbel-Hougaard copula with θ = 0.25 (row 1), θ = 0.5 (row

2), θ = 0.75 (row 3) and θ = 1 (row 4). The horizontal solid line is the true value of χ, while
the horizontal dashed line is the true value of χ̄. In the cases where χ = χ̄, the true value of
this is plotted using a horizontal solid line.
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Figure 5.21: Simulation of χ̂(u) (solid line) and ˆ̄χ(u) (dashed line) with a sample size of 5000
(left) and 50000 (right) for the Nelsen (4.2.8) copula with θ = 1.5 (row 1), θ = 2 (row 2),

θ = 5 (row 3) and θ = 10 (row 4). The horizontal solid line is the true value of χ, while the
horizontal dashed line is the true value of χ̄. In the cases where χ = χ̄, the true value of this
is plotted using a horizontal solid line.



Chapter 6

Estimation of taildependence in BMI

twindata

In this chapter we analyze the BMI of Finnish twins from the older cohort of the Finnish

Twin Cohort Study. We start by describing the data and then we move on to analyzing the

univariate behaviour of the BMI. This analysis is based on the methods described in Chapter

1. We �nish with a multivariate analysis of the data and estimate the various dependence

measures described in Chapter 3 and Chapter 4. Both the univariate and multivariate analysis

is carried out for the lower and the upper tail of the distribution of BMI. The main interest is to

investigate the dependency structure in the lower and the upper tail of BMI using monozygotic

and dizygotic twin pairs.

6.1 Description of the data

The data we consider are derived from the older cohort of the Finnish Twin Cohort Study

(Kaprio and Koskenvuo, 2002). A baseline questionaire was sent to all same-sex Finnish twins

in 1975, who were born before 1958 where both twins were still alive. In 1981 a follow-up

questionaire was sent to all the twins which had received the questionaire in 1975, regardless

of whether or not they had returned the original questionaire. The response rate to the �rst

questionaire was 89%, while it was 84% in the follow-up questionaire. Twin pairs that had

participated in at least one of the two �rst questionaires received a third questionaire in 1990.

In this survey twins born before 1930 were excluded and both twins still had to be alive. The

response rate in this survey was 77%. In the third questionaire the twins were also asked

what their weight was when they were 20 years old, when they were 30 years old, what their

weight was 12 months ago and what it was �ve years ago. These measurements are thus based

on the subjects memory rather than an actual measurement. The zygosity of each twin pair

was determined in the 1975 and 1981 surveys based on questions regarding the similarity of

appearance of the twins at an early school age. The reliability of this method of classifying the

zygosity of a twin pair was tested in a small study where 104 twin pairs participated (Sarna

et al., 1978). Each pair was classi�ed as monozygotic (MZ) or dizygotic (DZ) using the same

method as in the questionaire before classifying them as MZ or DZ using 11 bloodmarkers.

The observed agreement between the two methods of classi�cation was 100%. The probability

97



98 Univariate analysis

of misclassi�cation for a twin pair was estimated to be less than 2%.

The height and weight of each individual were self reported, and they were asked in an identical

way in each survey. The height was reported in centimeters and weight was reported in

kilograms. The BMI is then calculated according to the formula

BMI =
Weight

Height2
,

where the weight is given in kilograms and the height in centimaters. Several years after the

1990 questionaire, the validity of self reported height and weight was examined in a small

subsample of the people who participated in the 1990 questionaire (Korkeila et al., 1998). A

clinical examination showed that correlation of self reported BMI and measured BMI was 89%
for men and 90% for women, which indicates a good reliability of self reported BMI.

Our study is based on a total of 4349 twin pairs, where we have up to 7 measurements at

di�erent times. Overall we have 57524 measurements on individuals or 28762 measurements

on twin pairs, all aged 18-60. In Table 6.1 there is a short summary of the data, which we have

split up into the four groups �men MZ�, �men DZ�, �women MZ� and �women DZ�. For each

group we have the number of individual measurements, the number of measurements on twin

pairs, the age range, the age mean, the age median, the BMI range, the BMI mean, the BMI

median, the BMI variance and the covariance between the two twins. In both the measures

concerning the age and BMI, there are repeated measurements since some of the indiviuals

have reported their age and BMI more than once.

Men Women

MZ DZ MZ DZ

N (Individuals) 8212 16354 11836 21122

N (Twin pairs) 4106 8177 5918 10561

Age (Range) (18.01 - 61.00) (18.04 - 60.85) (18.04 - 60.89) (18.02 - 61.00)

Age (Mean) 34.98 35.23 34.18 34.34

Age (Median) 33.81 34.14 32.75 32.81

BMI (Range) (14.03 - 38.40) (15.19 - 39.79) (13.67 - 39.06) (13.12 - 39.92)

BMI (Mean) 24.00 24.37 22.28 22.65

BMI (Median) 23.67 24.02 21.63 22.05

BMI (Variance) 8.89 9.35 11.09 11.44

BMI (Covariance) 6.09 3.95 7.77 4.59

Table 6.1: Summary of data from the Finnish twins.

6.2 Univariate analysis

A univariate analysis of the twins serves several purposes. Firstly, it is interesting to see if

the BMI varies with age, since this a�ects whether or not it is necessary to do a multivariate

analysis on age de�ned subsets of the data. Secondly, an estimate of γ can give an indication

of which class of extreme value distributions the maximum or minimum BMI comes from.

This is relevant because larger values of γ means that the tail is heavier, and estimation of
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parameters become more di�cult if the tails are very light since there are fewer extreme val-

ues.

In Figure 6.1 a plot of the BMI versus age of Finnish males and females are shown. In this

�gure the age of each of the subjects has been rounded down to the nearest integer. For both

males and females we see a clear tendency of growth in BMI as the subjects get older. This

suggests that the BMI data is not stationary. For the very young men and women (18-19

years old) there are very few subjects with extremely high or low BMI. Also, from these plots

it seems that the upper tails are much heavier than the lower tails since more subjects are

further from the center of the distribution. This is also not unexpected since the distribution

of BMI has a �nite left endpoint.

Upper tail An estimate of γ in the upper tail in the GEV framework for each age group

can be seen in Figure 6.2, while an estimate of γ in the POT framework can be seen in Fig-

ure 6.4. In order to determine the threshold in the POT framework, a Mean residual life

plot for both men and women are presented in Figure 6.3. The mean residual life plots are

constructed using all the male and female subjects respectively. Based on the mean residual

life plots it seems reasonable to choose a threshold for the men at around 28, and 27 for the

women, since this is where the mean residual life plots start to become approximately linear.

We can not use these thresholds directly since we have not taken the age of the subjects into

consideration. Instead we use these thresholds to see how deep we have to get into the data in

order to obtain the extreme values. For men a threshold of 28 means that 11.22% of the data

should be considered extreme and for the women a threshold of 27 means that 9.80% should

be considered extreme. So for both men and women we will de�ne the threshold for each

age group to be the 0.9 empirical quantile. The estimates of γ in both the GEV framework

and the POT framework are maximum likelihood estimates from the likelihood equations in

(1.13) and (1.15), respectively. Concerning the GEV estimates of γ we made 20 blocks and

assigned all subjects randomly to one of these blocks. This was done in such an order that

all the blocks had the same size whenever possible. In both the GEV famework and the POT

framework we used the R package �ismev� from (Coles, 2001). It can be seen from the plots of

γ versus age, that the age of each subject does not in�uence the estimate of γ very much. The

estimate of γ is for both men and women fairly close to 0, which suggests that the distribution

function of BMI is in the domain of attraction of the Gumbel class. The estimates of γ and

the pointwise con�dence intervals are based on the assumption that all the individuals are

independent. This is not exactly true, since the two individuals in each twinpair can not be

considered independent. We do have independence between the pairs, though.

Lower tail An estimate of γ for the lower tail of the distribution can be obtained in the

same way as for the upper tail, by using the relation described in (1.1). In Figure 6.5 a

plot of the estimate of γ versus age is shown for the Finnish men and the Finnish women in

the GEV framework, while a plot of the estimate of γ in the POT framework can be seen

in Figure 6.7. Again we use a mean residual life plot to �nd a percentage based threshold.

When we consider the lower tail, the mean residual life plot consists of the mean shortfall

below a threshold instead of the mean excess above a threshold, but otherwise it is exactly the

same. Based on the mean residual life plots in Figure 6.6 a threshold around 19 for men and
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Figure 6.1: Plot of BMI versus age for Finnish males (left) and females (right). Empirical

quantiles are given by the lines, Min and Max (red), 0.05 and 0.95 (orange), 0.1 and 0.9

(green), 0.25 and 0.75 (blue).
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Figure 6.2: Upper tail: Estimates of γ in the GEV framework for Finnish males (left) and

females (right) with a pointwise 95% con�dence interval.

18 for women seems reasonable, since this is where the mean residual life plots begin to be

approximately linear. These thresholds corresponds to selecting approximately 2% of the data

and 4% of the data for men and women, respectively. However, if we only include such few

observations then the variance of the estimate is very high, so a threshold of 5% for both men

and women have been chosen. In the GEV framework we used 20 blocks for both men and

women. Based on the estimates of γ in both the GEV framework and the POT framework,

it seems likely that the distribution of BMI in the lower tail belongs to the Gumbel Class.

Theoretically we should have a �nite left endpoint for the distribution of BMI. For simplicity,

and because the estimates of γ vary quite alot when we take age into account, we ignore the

age of the subjects in our attempt to estimate this left endpoint. The left endpont can be

estimated using the constraint in (1.12) for the GEV framework, while it can be done using

the constraint in (1.14) for the POT framework. For men we �nd that the left endpoint of the

distribution is 6.84 in the GEV framework while it is 8.33 in the POT framework. For women

the left endpoint is estimated to be 11.82 in the GEV framework, whle it is estimated to be

7.96 in the POT framework.
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Figure 6.3: Upper tail: Mean residual life plots of Finnish males (left) and females (right)

with a pointwise 95% con�dence interval.
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Figure 6.4: Upper tail: Estimation of γ in the POT framework for Finnish males (left) and

females (right) with a pointwise 95% con�dence interval.
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Figure 6.5: Lower tail: Estimates of γ in the GEV framework for Finnish males (left) and

females (right) with a pointwise 95% con�dence interval.
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Figure 6.6: Lower tail: Mean residual life plots of Finnish males (left) and females (right)

with a pointwise 95% con�dence interval.
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Figure 6.7: Lower tail: Estimates of γ in the POT framework for Finnish males (left) and

females (right) with a pointwise 95% con�dence interval.
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6.3 Multivariate analysis

The main goal of the analysis of the Finnish twin data, is to examine the extremal tail de-

pendence of BMI for monozygotic and dizygotic twins. Such an analysis is very interesting

because the e�ect of the genes in cases of extreme overweight or extreme underweight can

be studied. If the tail dependence is much stronger for the monozygotic twins compared to

the dizygotic twins, then we can say that genes play a major role. If the tail dependence is

approximately equal for the two types of twins, then the data suggests that genes are not the

main contributing factor to either extreme overweight or extreme underweight. For both the

monozygotic and the dizygotic twins we split them up into several di�erent groups, by age

and sex. These are the groups de�ned in Table 6.2 to Table 6.5. We split the twins into these

di�erent groups partly because the BMI depends on age, but also because di�erences between

sex and age groups can be relevant. For each group we estimate the dependence parameters

η, χ, χ̄ and τ . It should be noted that for all these estimates, the assumption of independent

data is violated. This is because we have several observations for some of the twin pairs, so

for the estimates we sometimes have several observations from the same twinpairs.

In Figure 6.8 we see scatterplots, where we have split both men and women up into monozy-

gotic and dizygotic twins. From these plots we get an indication that the monozygotic twins

have a higher tail dependence than the dizygotic twins. This is because the extreme datapoints

tend to lie closer to the 45 degree line for the monozygotic twins compared to the dizygotic

twins. Here, the age of the twins has not been taken into account.

Upper tail In Table 6.2 and Table 6.3 we see the estimates of the tail dependence param-

eters in the upper tail for the monozygotic twins and the dizygotic twins, respectively. The

estimates of η are computed using the estimator η̂m where we use bias correction. For the bias

correction we �x the value ητ = 1 , since this seemed to work best in the simulation studies.

The estimate of η that we use is the median of the η̂m estimates we get for m = 5, . . . ,
⌊
n
4

⌋
,

where n denotes the number of twin pairs in the group. The estimates of η also gives us direct
estimates of χ̄ using the relation χ̄ = 2η − 1. The estimates of χ̄ obtained in this way is

found in the column χ̄1. Estimates of χ and χ̄ are found using (3.29) and (3.34), respectively,

where we have chosen the threshold u = 0.9. These estimates of χ̄ are found in the column χ̄2.

Furthermore, we also have a column χ̄3, which contains an estimate of χ̄ where the threshold u
was chosen to be 0.95. The estimates of τ are obtained using the estimator τ̂k with k = n0.95,
where n is the number of twin pairs in the group. For the estimates of η and χ̄1 we have used a

non parametric bootstrap to obtain standard deviations of the estimates. In these bootstraps

1000 iterations were used. The standard deviations of the estimates of χ and χ̄2 are found

using Proposition 3.5.5 and Proposition 3.5.6, respectively. The estimates of χ(u) and χ̄(u)
and their standard deviations are computed with the R package �POT� (Ribatet, 2006).

Concerning the estimates of η we see that there is a clear tendency of the estimate to be higher

for the monozygotic twins compared to the dizygotic twins. This is true for all the di�erent

groupings of the data we have considered. However, the di�erence in the η estimates gets

lower when the subject gets older. This can for instance be seen for the males aged 40 − 60,
where the η estimate is 0.697 for the monozygotic twins while it is 0.650 for the dizygotic

twins. This indicates that the e�ect of the genes on extreme obesity diminish as the subjects

gets older. The pair of measures (χ, χ̄) does not �t perfect into the discussion summarized
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in Table 3.1. This is because we require either (χ > 0, χ̄ = 1) or (χ = 0, χ̄ ≤ 1), which we

do not have. Still it is quite clear that the monozygotic twins have higher values of both χ
and χ̄ than the dizygotic twins do, implying a higher tail dependence in the upper tail. The

estimates of τ we see in Table 6.2 and Table 6.3 are not very usefull, which was also expected

from the simulation study. The values just seem arbitrary, and do not o�er much insight to

the data. We have however decided to include them anyway to show that we have made an

attempt to make a full data analysis.

Lower tail

The estimates of the dependence measures for the lower tail can be found in Table 6.4 and

Table 6.5 for monozygotic and dizygotic twins, respectively. Concerning the dependence mea-

sure η, we see that the estimates are much higher for the monozygotic twins than for the

dizygotic twins in all cases except for men aged 40− 60, where the estimate is highest for the

dizygotic twins. The fact that it is higher for the dizygotic twins is unexpected, as we would

expect the estimates of η to be similar for the two types of twins if the genes did not contribute

signi�cantly, but we would never expect the dizygotic twins to have a higher degree of tail

dependence. For the dependence measures χ and χ̄, we also see that the estimates tend to be

higher for the MZ twins than the DZ twins, meaning that the there is a stronger dependence

between extreme underweight for MZ twins. The estimates of τ are again not very usefull.

In Figure 6.9 and Figure 6.10 we have added plots of χ(u) and χ̄(u) for the upper and lower

tail, respectively. From these plots we see how the dependency structure changes when we

move deeper into the tails. We see that both χ(u) and χ̄(u) tend to be higher for the monozy-

gotic twins no matter how deep into the tail we go, indicating that the BMI dependency is

stronger for monozygotic twins for all levels of BMI.

As mentioned in Section 3.5 we can use a plot of the function χ(u) as a measure of goodness

of �t to a bivariate extreme value distribution. In Figure 6.11 plots of χ(u) for block maxima

of all MZ twins and DZ twins can be seen for both the lower and the upper tail. The plots are

made by dividing the data into 400 blocks. In all the plots the function χ(u) is fairly stable,

which is a necessary condition for a good �t to the extreme value distribution. The same plots

for the other groups show similar behaviour, and has hence been omitted from the thesis.
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Figure 6.8: Scatterplot of twins for men (left), women (right), MZ (top), DZ (bottom) with

the density of the points represented by color.



106 Multivariate analysis

N
η

χ̄
1

χ
χ̄
2

χ̄
3

τ
a
a

O
v
er
a
ll

2
0
0
4
8

0
.7
9
6
(0
.0
2
4
5
)

0
.5
9
2
(0
.0
4
9
0
)

0
.4
9
2
(0
.0
3
9
9
)

0
.5
3
5
(0
.0
2
2
3
)

0
.5
5
6
(0
.0
2
7
4
)

2
.6
3
1

M
en

8
2
1
2

0
.7
8
1
(0
.0
4
0
5
)

0
.5
6
3
(0
.0
8
1
0
)

0
.4
4
5
(0
.0
6
3
0
)

0
.5
0
9
(0
.0
3
4
6
)

0
.5
1
2
(0
.0
4
2
8
)

-0
.8
3
5

M
en

(1
8
-2
9
)

2
2
4
1

0
.8
3
3
(0
.0
7
2
6
)

0
.6
6
7
(0
.1
4
5
1
)

0
.4
4
1
(0
.1
2
0
9
)

0
.4
9
1
(0
.0
6
6
1
)

0
.5
7
6
(0
.0
8
2
0
)

0
.6
6
5

M
en

(3
0
-3
9
)

3
3
5
6

0
.8
7
1
(0
.0
7
3
9
)

0
.7
4
1
(0
.1
4
7
9
)

0
.4
0
8
(0
.0
9
9
8
)

0
.4
6
8
(0
.0
5
3
6
)

0
.4
7
6
(0
.0
6
6
9
)

-0
.5
2
0

M
en

(4
0
-6
0
)

2
6
1
5

0
.6
9
7
(0
.0
8
2
8
)

0
.3
9
4
(.
1
6
5
6
)

0
.3
8
7
(0
.1
1
4
2
)

0
.4
2
8
(0
.0
6
0
2
)

0
.4
1
6
(0
.0
7
6
2
)

-1
.5
7
0

W
o
m
en

1
1
8
3
6

0
.8
0
5
(0
.0
3
2
3
)

0
.6
1
0
(0
.0
6
4
5
)

0
.5
0
4
(0
.0
5
1
4
)

0
.5
6
2
(0
.0
2
9
3
)

0
.5
9
7
(0
.0
3
5
7
)

1
.3
2
5

W
o
m
en

(1
8
-2
9
)

3
4
8
4

0
.8
3
6
(0
.0
6
7
8
)

0
.6
7
2
(0
.1
3
5
7
)

0
.4
5
2
(0
.0
9
7
8
)

0
.4
8
4
(0
.0
5
2
9
)

0
.5
2
3
(0
.0
6
5
8
)

-1
.6
4
6

W
o
m
en

(3
0
-3
9
)

5
0
7
1

0
.8
1
9
(0
.0
4
9
3
)

0
.6
3
8
(0
.0
9
8
5
)

0
.4
4
5
(0
.0
7
9
4
)

0
.5
2
2
(0
.0
4
4
3
)

0
.5
4
2
(0
.0
5
4
4
)

0
.5
0
5

W
o
m
en

(4
0
-6
0
)

3
2
8
1

0
.7
7
4
(0
.0
5
3
1
)

0
.5
4
9
(0
.1
0
6
2
)

0
.4
7
2
(0
.0
9
8
9
)

0
.4
9
7
(0
.0
5
4
5
)

0
.5
4
4
(0
.0
6
7
5
)

2
.1
6
3

T
a
b
le
6
.2
:
U
p
p
er

ta
il
:
E
x
tr
em

a
l
d
ep
en
d
en
cy

es
ti
m
a
te
s
fo
r
M
Z
tw
in
s.

N
η

χ̄
1

χ
χ̄
2

χ̄
3

τ
a
a

O
v
er
a
ll

3
7
4
7
6

0
.6
0
6
(0
.0
2
0
9
)

0
.2
1
2
(0
.0
4
1
9
)

0
.2
6
1
(0
.0
3
1
7
)

0
.2
7
2
(0
.0
1
5
5
)

0
.2
5
6
(0
.0
2
0
8
)

2
.8
8
0

M
en

1
6
3
5
4

0
.6
0
0
(0
.0
3
0
6
)

0
.2
0
0
(0
.0
6
1
2
)

0
.2
1
9
(0
.0
4
8
7
)

0
.2
1
9
(0
.0
2
3
3
)

0
.1
9
8
(0
.0
3
2
2
)

7
.4
5
0

M
en

(1
8
-2
9
)

4
3
5
6

0
.6
0
0
(0
.0
4
9
9
)

0
.1
9
9
(0
.0
9
9
8
)

0
.2
1
7
(0
.0
9
2
2
)

0
.2
9
9
(0
.0
4
5
5
)

0
.2
4
9
(0
.0
6
1
1
)

-2
.1
3
0

M
en

(3
0
-3
9
)

6
6
5
7

0
.5
5
2
(0
.0
3
6
0
)

0
.1
0
4
(0
.0
7
2
1
)

0
.1
6
2
(0
.0
7
6
4
)

0
.1
8
9
(0
.0
3
6
6
)

0
.1
7
2
(0
.0
5
1
1
)

5
.8
9
0

M
en

(4
0
-6
0
)

5
3
4
1

0
.6
5
0
(0
.0
6
0
6
)

0
.2
9
9
(0
.1
2
1
2
)

0
.1
3
5
(0
.0
8
6
0
)

0
.1
6
3
(0
.0
4
0
8
)

0
.1
5
6
(0
.0
5
7
4
)

-0
.8
4
4

W
o
m
en

2
1
1
2
2

0
.6
2
3
(0
.0
2
4
0
)

0
.2
4
6
(0
.0
4
8
0
)

0
.2
5
3
(0
.0
4
2
3
)

0
.2
7
2
(0
.0
2
0
6
)

0
.2
9
1
(0
.0
2
7
4
)

0
.4
9
8

W
o
m
en

(1
8
-2
9
)

6
1
9
1

0
.5
6
8
(0
.0
4
9
7
)

0
.1
3
6
(0
.0
9
9
4
)

0
.2
3
8
(0
.0
7
8
5
)

0
.2
3
4
(0
.0
3
8
0
)

0
.2
3
3
(0
.0
5
1
6
)

0
.0
7
7

W
o
m
en

(3
0
-3
9
)

8
8
3
5

0
.5
6
9
(0
.0
4
3
3
)

0
.1
3
9
(0
.0
8
6
7
)

0
.1
9
1
(0
.0
6
6
3
)

0
.2
0
3
(0
.0
3
1
7
)

0
.1
8
4
(0
.0
4
4
1
)

-0
.3
8
5

W
o
m
en

(4
0
-6
0
)

6
0
9
6

0
.6
6
8
(0
.0
4
1
3
)

0
.3
3
7
(0
.0
8
2
7
)

0
.1
6
6
(0
.0
7
9
0
)

0
.2
5
6
(0
.0
3
8
3
)

0
.2
5
7
(0
.0
5
1
5
)

-0
.3
9
4

T
a
b
le
6
.3
:
U
p
p
er

ta
il
:
E
x
tr
em

a
l
d
ep
en
d
en
cy

es
ti
m
a
te
s
fo
r
D
Z
tw
in
s.



Multivariate analysis 107

N
η

χ̄
1

χ
χ̄
2

χ̄
3

τ
a
a

O
v
er
a
ll

2
0
0
4
8

0
.7
9
8
(0
.0
2
6
2
)

0
.5
9
7
(0
.0
5
2
5
)

0
.4
1
9
(0
.0
5
6
6
)

0
.5
8
5
(0
.0
2
2
6
)

0
.5
7
4
(0
.0
2
7
4
)

-3
.5
3
9

M
en

8
2
1
2

0
.8
7
1
(0
.0
3
8
0
)

0
.7
4
2
(0
.0
7
5
9
)

0
.4
7
5
(0
.0
8
6
8
)

0
.5
4
6
(0
.0
3
5
0
)

0
.6
0
0
(0
.0
4
2
8
)

0
.0
3
4

M
en

(1
8
-2
9
)

2
2
4
1

0
.9
5
8
(0
.0
7
1
5
)

0
.9
1
6
(0
.1
4
3
1
)

0
.5
9
1
(0
.1
5
9
5
)

0
.5
5
6
(0
.0
6
7
2
)

0
.6
8
6
(0
.0
8
2
6
)

0
.4
3
0

M
en

(3
0
-3
9
)

3
3
5
6

0
.7
8
7
(0
.0
5
4
1
)

0
.5
7
3
(0
.1
0
8
2
)

0
.4
5
5
(0
.1
3
6
6
)

0
.5
6
7
(0
.0
5
5
0
)

0
.5
9
2
(0
.0
7
0
0
)

-0
.4
7
4

M
en

(4
0
-6
0
)

2
6
1
5

0
.4
8
7
(0
.0
7
0
6
)

-0
.0
2
7
(0
.1
4
1
2
)

0
.3
0
2
(0
.1
6
2
7
)

0
.4
9
5
(0
.0
6
1
2
)

0
.4
1
6
(0
.0
7
6
2
)

-0
.3
1
4

W
o
m
en

1
1
8
3
6

0
.7
8
4
(0
.0
3
2
1
)

0
.5
6
8
(0
.0
6
4
2
)

0
.3
7
2
(0
.0
7
4
8
)

0
.5
4
3
(0
.0
2
9
1
)

0
.5
2
7
(0
.0
3
5
6
)

0
.6
4
6

W
o
m
en

(1
8
-2
9
)

3
4
8
4

0
.7
9
5
(0
.0
5
7
3
)

0
.5
8
9
(0
.1
1
4
7
)

0
.3
7
3
(0
.1
3
8
0
)

0
.4
8
4
(0
.0
5
2
9
)

0
.5
3
5
(0
.0
6
5
8
)

0
.6
6
4

W
o
m
en

(3
0
-3
9
)

5
0
7
1

0
.7
6
1
(0
.0
4
9
3
)

0
.5
2
2
(0
.0
9
8
6
)

0
.2
9
7
(0
.1
1
7
0
)

0
.5
1
0
(0
.0
4
4
1
)

0
.4
5
3
(0
.0
5
4
6
)

7
.1
9
2

W
o
m
en

(4
0
-6
0
)

3
2
8
1

0
.8
8
8
(0
.0
5
7
3
)

0
.7
7
5
(0
.1
1
4
6
)

0
.4
7
5
(0
.1
3
7
0
)

0
.4
9
0
(0
.0
5
4
4
)

0
.6
0
0
(0
.0
6
7
6
)

-0
.7
7
7

T
a
b
le
6
.4
:
L
ow

er
ta
il
:
E
x
tr
em

a
l
d
ep
en
d
en
cy

es
ti
m
a
te
s
fo
r
M
Z
tw
in
s.

N
η

χ̄
1

χ
χ̄
2

χ̄
3

τ
a
a

O
v
er
a
ll

3
7
4
7
6

0
.6
4
9
(0
.0
1
7
6
)

0
.2
9
8
(0
.0
3
5
2
)

0
.1
9
5
(0
.0
4
4
4
)

0
.3
4
7
(0
.0
1
5
6
)

0
.3
5
2
(0
.0
2
0
3
)

1
.2
7
5

M
en

1
6
3
5
4

0
.6
6
4
(0
.0
3
0
7
)

0
.3
2
8
(0
.0
6
1
4
)

0
.2
0
3
(0
.0
6
7
0
)

0
.3
3
5
(0
.0
2
3
6
)

0
.3
6
7
(0
.0
3
0
6
)

-1
.9
7
5

M
en

(1
8
-2
9
)

4
3
5
6

0
.5
5
8
(0
.0
4
5
1
)

0
.1
1
7
(0
.0
9
0
2
)

0
.1
0
7
(0
.1
3
3
2
)

0
.2
7
5
(0
.0
4
5
4
)

0
.2
3
4
(0
.0
6
1
4
)

0
.1
3
4

M
en

(3
0
-3
9
)

6
6
5
7

0
.6
2
9
(0
.0
5
1
4
)

0
.2
5
9
(0
.1
0
2
9
)

0
.1
0
3
(0
.1
0
8
1
)

0
.2
7
6
(0
.0
3
6
8
)

0
.2
4
5
(0
.0
4
9
6
)

1
.1
6
6

M
en

(4
0
-6
0
)

5
3
4
1

0
.8
0
4
(0
.0
6
2
8
)

0
.6
0
7
(0
.1
2
5
6
)

0
.2
1
3
(0
.1
1
6
8
)

0
.2
9
4
(0
.0
4
1
1
)

0
.3
6
4
(0
.0
5
3
7
)

0
.5
8
3

W
o
m
en

2
1
1
2
2

0
.6
2
9
(0
.0
2
4
2
)

0
.2
5
8
(0
.0
4
8
3
)

0
.1
5
2
(0
.0
5
9
8
)

0
.3
0
9
(0
.0
2
0
7
)

0
.2
6
3
(0
.0
2
7
6
)

-0
.3
9
2

W
o
m
en

(1
8
-2
9
)

6
1
9
1

0
.6
3
1
(0
.0
4
5
7
)

0
.2
6
2
(0
.0
9
1
5
)

0
.1
5
1
(0
.1
1
0
6
)

0
.2
0
2
(0
.0
3
7
9
)

0
.1
7
6
(0
.0
5
2
8
)

1
.0
9
6

W
o
m
en

(3
0
-3
9
)

8
8
3
5

0
.6
3
2
(0
.0
3
3
1
)

0
.2
6
4
(0
.0
6
6
2
)

0
.1
2
3
(0
.0
9
3
3
)

0
.3
0
1
(0
.0
3
2
0
)

0
.2
3
9
(0
.0
4
3
1
)

-1
.7
6
2

W
o
m
en

(4
0
-6
0
)

6
0
9
6

0
.6
9
0
(0
.0
4
7
9
)

0
.3
8
1
(0
.0
9
5
7
)

0
.1
4
0
(0
.1
1
1
6
)

0
.2
3
3
(0
.0
3
8
2
)

0
.3
0
5
(0
.0
5
0
8
)

0
.6
1
4

T
a
b
le
6
.5
:
L
ow

er
ta
il
:
E
x
tr
em

a
l
d
ep
en
d
en
cy

es
ti
m
a
te
s
fo
r
D
Z
tw
in
s.



108 Multivariate analysis

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

χ

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

χ

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

χ

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

u

χ

Figure 6.9: Upper tail: Plots of χ(u) (top) and χ̄(u) (bottom) for all MZ twins (left) and DZ

twins (right) with 95% con�dence intervals (Grey) and lower and upper bound of χ(u) (Blue).
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Figure 6.10: Lower tail: Plots of χ(u) (top) and χ̄(u) (bottom) for all MZ twins (left) and DZ

twins (right) with 95% con�dence intervals (Grey) and lower and upper bound of χ(u) (Blue).
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Figure 6.11: Plots of χ(u) for block maxima of all MZ twins (left), DZ twins (right), upper tail

(top), lower tail (bottom) with 95% con�dence intervals (Grey) and lower and upper bound

of χ(u) (Blue).
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Epilogue

In this thesis we have given a thorough introduction to the fundamental convergence results

in extreme value theory. We have provided some simple ways of estimating the extreme value

index through maximum likelihood. More sophisticated ways of estimating the extreme value

index are available in the literature, but describing these methods in detail, would have led us

too far from the main objective of this thesis. We described the max-domain of attraction for

the Gumbel class, the extremal Weibull class and the Fréchet class. Extra attention was paid

to the Fréchet class, since estimation of parameters in the bivariate case resembles estimation

of parameters in the Fréchet class.

After the introduction to the univariate framework in extreme value statistics we discussed

multivariate extreme value theory, where we focussed mainly on the bivariate case. Here

we discussed transformation of the marginal distributions to standard Fréchet distributions.

Transformations to other margins like standard Pareto distributions, exponential distribu-

tions, uniform distributions and Gumbel distributions are also possible, and would have led

to di�erent simulation results. However, the most common practice is to use transformation

to standard Fréchet margins, which is why we opted to do this. Exploring the other ways

of transformation would also have been a possibility, but would have required more focus to

this area. Concerning the dependency structure in the bivariate case, we have discussed sev-

eral dependence measures, and shown how they are all connected. For the coe�cient of tail

dependence and the measures χ and χ̄ we have discussed ways of estimating these. Most of

our e�ort was put into estimating the coe�cient of tail dependence, while estimation of χ and

χ̄ was considered a minor detail. In the estimation of the coe�cient of tail dependence, we

also included bias correction which required an estimate of the second order parameter τ . We

proposed two ways of estimating τ , where neither proved to be very good. These estimators

could possibly be improved, if asymptotic normality was established under a third order con-

dition similar to the second order condition in Assumption 4.1.4. This would allow us to make

a bias corrected estimator for τ , and determine values of the tuning paramters, that would

theoretically minimize the variance of the estimator. Another possibility of improving the

estimator of τ could be to implement an automated threshold selection. This idea is discussed

in (Peng, 2010). Since the estimation of τ did not work very well in practice, we decided to

use the canonical choice τη = 1 in the estimation of η, throughout the rest of the thesis. This
choice was made, since it seemed to perform even better than using the true values of η and

τ in the simulations.

For the twin data we made a full univariate analysis, where we found that the lower tail of

BMI was lighter than the upper tail. We estimated the extreme value index with maximum

likelihood using both the block maxima approach and the peaks over threshold approach. In

the bivariate analysis we estimated the coe�cient of tail dependence, the dependence mea-

sures χ and χ̄ and the second order parameter τ for age and sex de�ned subsets of the data.

The estimation of the second order parameter did not work very well and did not o�er any

insight to the data. For the other estimates, there were a clear tendency for the dependency

measures to be higher for the monozygitc twins, indicating that genes play a major role in

extreme obesity and extreme underweight.

In the analysis of the twin data it would have been interesting to have a uni�ed model for the

BMI which took the age and sex of the subjects into account. This could have been obtained

if an extreme value regression model had been �tted to the data instead of the model we
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�tted. This is however, an approach we did not include in the theoretical discussion about

extreme value theory. An introduction to this area of extreme value theory would be a master

thesis in itself, so applying both the approach we took and this approach was not an option.

Studying extreme obesity and underweight among twins with a uni�ed model, could be an

idea for further study, though.
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