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Dette nummer af Matilde har som tema, rekreativ matematik, hvorved vi
teenker pa den umiddelbare og underholdende side af matematikken. Fak-
tisk har vi jo allerede pd bladet en trofast og fantasifuld redakter i Mogens
Esrom Larsen, der bidrager med sin kolumne Aftermath - hvor man finder
mange speendende problemer. Disse er ofte bdde sjove og overraskende,
og belyser den veesentlige side af matematik der handler om at lose gdder,
ofte med snedige vinkler og tricks (men som prof. Svend Bundgaard sagde:
ndr man forst en gang har set et trick, si er det ikke leengere et trick men
en metode).

Vi har hentet nogle artikler til dette nummer fra tidsskriftet, Mathematical
Intelligencer - og er taknemmelige til Springer for velvilje hertil. Iser er
det en forngjelse at bringe en klassiker af Martin Gardner, der jo er beromt
for sine artikler om matematik i Scientific American igennem mange ar. Se
her omtalen af Martin Gardner i Mogens Esrom Larsens artikel leengere
fremme.

Det kan naturligvis veere sveert at angive det skarpe skel mellem rekreativ
matematik og “almindelig” matematik; man ville gerne og helst udbrede
det speendende og underholdende ved faget til s& mange som muligt, at
bibringe gleeden ved at opleve og indse matematiske sammenhange og
kendsgerninger - men desveerre kraever det jo af og til en del tdlmodighed.
Her kommer sma og store matematiske gader til undseetning; og det tiltaler
mange, se blot pd udbredelsen af Sudoku eller andre indslag som f. eks.
diverse intelligenstests, hvor man skal finde (Mensa-problemer) den naeste
figur i reekken, for ikke at tale om spil som f. eks. Hex (af Piet Hein, se bare
Google). Her er i ovrigt en lille sekvensgade: Hvad er det naeste i reekken

11, 12, 13, 14, 15, 16, 17, 20, 22, 24, 31?

Vink: Hvad kommer for?

Som det fremgar af nogle af de felgende artikler, sa er (igen) begrebet sand-
synlighed centralt, og er da ogsd helt med i daglige oplevelser af matematik.
Spil og chancer, odds og tendenser er naturlige dele af den moderne hverdag.
Maske lidt for naturlige, i hvert fald hvad angar den financielle gamblen
med store veerdier. Men lad det nu ligge, sammen med leasing-karuseller
og anden anvendt aritmetik.

Som sagt kan géder veere en sjov og uforpligtende indgang til matematik, tag
nu f. eks. historien om to russiske sostre, der boede i hver sin by. P4 samme
tid en morgen startede de hver mod den anden by; klokken 12 middag
medtes de og fortsatte, hver i sit konstante tempo. Klokken 16 var den ene
soster fremme (ved den anden by) og klokken 21 var den anden fremme.
Hvad tid startede de den morgen?

Matematikken hjeelper os til at teenke over mange forskellige problemer,
bade af opdigtet og reel natur, og kan gere det usynlige synligt; vi mé vaere
taknemmelige for badde de sma og de store glimt af indsigt.
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Rekreativ matematik
- en selvmodsigelse?

“A serious business” — en alvorlig af-
feere? — var titlen pa David Singmasters
tiltreedelsesforeleesning til sit professorat
ved University of The South Bank i 1992.
Sa vidt jeg ved det eneste professorat i
netop emnet “rekreativ matematik,” der
ellers har vaeret en hobby for matemati-
kere eller en forretning for amatgrer. Det
sidste var i Davids tanker.

Fremtraedende matematikere har dyr-
ket emnet, Edouard Lucas, W. W. Rouse
Ball, H. S. M. Coxeter, Roger Penrose,
John H. Conway, David Gale, Ian Ste-
wart oma, mens amatgrerne taeller de gam-
le, H. A. Dudeney i England, Sam Loyd
og Matin Gardner i USA; sidstneevnte hg-
stede uvisnelig haeder for sin manedlige
side i Scientific American 1955-80. Der-
for har der veeret holdt mgder — “Ga-
therings for Gardner” hvert andet ar si-
den 1994 i Atlanta.

Hvorfor nu det? Det skyldes, at skolen
i USA behandler isser matematik meget
stedmoderligt; der lsegges stor veegt pa
fagets kedeligste side: Lgsning af proble-
mer, — der ikke kan ophidse nogen, — ved
brug af foreskrevne skabeloner, — som ele-
verne ikke fatter relevansen af. Der findes
derfor en raekke isser amerikanske mate-
matikere, som skylder Martins manedlige
indsprgjtning i Scientific American, at de
overhovedet kom til at interessere sig for
faget. Og de mgdes sa i Atlanta for at
hylde deres gurul!

Men for Dudeney og Sam Loyd var det
“business.” De to var hgjt elskede bidrag-
ydere til aviser og blade af opgaver, der
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Af: Mogens Esrom Larsen g
Institut for Matematiske Fag
Kobenhavns Universitet
email: mel@math.ku.dk

kunne udfordre menigmand. Og hvad er
sa en ideel opgave? Den skal jo kunne
forstas af enhver, og i princippet lgses af
enhver, — ikke med matematik, men med
intelligens! At den kan lgses matematisk
er kun til opgavestillerens fordel, hvis han
da ikke selv er superintelligent.

[ dette nr. af Matilde stiller jeg en raek-
ke typiske opgaver, men ogsa to af opga-
verne i sidste nr. er typiske. Opgaven om
tryllekunsten er helt perfekt! Selv gar-
vede matematikere klarer sig ikke uden
en god idé! Og opgaven om duellanterne
er velegnet, mens sokkerne, der fgrer til
Pells ligning, nok er for sveer. Men den
simpleste lgsning kan alle finde. De nye
opgaver er alle “rekreative,” efter mit skgn.
Da jeg stillede jeep—opgaven i Illustreret
Videnskab, fik jeg et begejstret takkebrev
fra Norge; det var gaet op for laeseren, at
der ikke er greenser for, hvor langt fladen
kan na ud i grkenen. (Den harmoniske
reekkes divergens.) Se, det er jo et eksem-
pel pa noget helt andet: Kan jeg lokke lae-
seren til at begejstres over sin nyerhver-
vede indsigt?

Opgaven med de tre kraftvaerker og de
tre huse skyldes i gvrigt Dudeney, — maer-
keligt nok, Euler burde have haft den.
(Den kommer maske i et endnu ikke trykt
bind af hans veerker?)

En lille personlig anekdote. David Sing-
master spurgte mig i 1990, om der var
diophantiske trekanter, (dvs. med heltal-
lige sider), der opfyldte vinkelrelationen,
at LA =2(4LB—ZC)? Den var ikke i lit-
teraturen! Det “oplagte” svar var trekan-
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ten med siderne 6, 7 og 8. En rekreativ
opgave? Maske.

Jeg har haft forngjelsen at forteelle den-
ne historie for AMS-MAA i San Fran-
cisco, for Matematiklaererforeningen i O-
dense, som kollokvium i Alborg og sagar
i studenterkollokviet i Kgbenhavn!

Nogle andre rekreative problemer er
dem, der handler om pentominoer, dvs.
figurer dannet af 5 lige store kvadrater,
sa figurerne er sammenhangende side ved
side eller for skakbrikken tarnet. Der er
12 sadanne, der ikke er indbyrdes kon-
gruente. De blev lanceret af Dudeney for
100 ar siden. Spgrgsmalet om antallet af
mader, de kan daekke et skakbraet uden
centrum blev besvaret pa MIT i 1959 ved
hjeelp af en computer fra IBM, svaret er
65. Dette blev omtalt af Martin Gard-
ner i 1960. Solomon Golumb, University
of Southern California, stillede opgaven i
1965 at vise, at en “ruder” dvs, et kva-
drat pa spidsen, med 61 mindre kvadrater
med akseparallelle sider, ikke kan dackkes
af pentominoerne, saledes at det tomme
kvadrat er i centrum. Jeg viste i 1986,
at de 12 figurer kun kan anbringes i ru-
den sadan, at det tomme kvadrat er pa
randen. Af dem kender jeg 10 mulighe-
der, men jeg ved ikke, om det er samtlige.
Rekreativt? Det synes jeg!

Men hvad er sa rekreativ matematik?
Tja, enhver spontan gleede ved en pro-
blemlgsning. Og det er ikke sa forskelligt
fra al anden matematik. Vi har jo den
erfaring, at et problem skal abstraheres
ud af sin sammenhaeng, sa der ses bort
fra distraherende irrelevante sider, lgses
sa generelt som muligt, og sa vendes til-
bage mod sin oprindelse til sidst. Og der
kan ga lang tid. Teenk pa tidsforskellen
fra Euklids og Apollonios’ keglesnit i 2.
arh. fvt. og Johannes Keplers model for

marsbanen i 1609!

Et slaende eksempel af xldre dato er
Yale 4662, en assyrisk lertavle fra ca. 1800
fvt. Her stilles og besvares opgaven at
bestemme siderne i et rektangel, beskre-
vet som en gravet grgft, hvor man kender
produktet, altsa groftens areal, og “sum-
men af leengde og bredde!” Men det er jo
ikke nogen naturlig problemstilling, det
er ren glaede over at kunne lgse proble-
met. At denne lgsning har haft mange
senere anvendelser er vel uimodsigeligt.

Ogsa de assyriske tabeller over pytha-
goraeiske tripler er slaende. Fx. Plimp-
ton 322, der godt nok starter med (3,4,5),
men ender med (13500, 12709, 18541).
De har begejstret regnet videre pa form-
lerne, sa langt energien slog til!

For nogle ar siden blev verden udsat
for et spgrgsmal. Et offer far at vide, at
der bag tre dgre er en bil og to gedebukke
hhv. Kan han geette dgren med bilen, ma
han fa den i praemie, — ellers bliver han
stanget! Nu peger han pa en dgr, men
i stedet for at abne den, abner studie-
vaerten en anden dgr og fremviser en ged.
Offeret far nu tilbudt at veelge om, altsa
veelge den sidste dgr eller at fastholde sit
oprindelige valg. Utallige er de matema-
tikere, der sagde, at det kunne vaere lige
meget. Erfaringen er, at opgaver med be-
tingede sandsynligheder gar hen over ho-
vedet pa de fleste.

11976 fandt Ern6 Rubik i Budapest pa
et paedagogisk hjalpemiddel, der skulle
treene hans arkitektstuderendes rumfor-
nemmelse. En terning delt i 27 ens ter-
ninger, som med en genial konstruktion
kunne drejes om terningens centrum i de
tre hovedretninger. Rubiks terning gik
sin sejrsgang over verden, gjorde Sing-
master verdenskendt og indtog H C Or-
sted Instituttets kantine til jul 1980 pa
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Flemming Topsges foranledning. For at

udnytte terningens matematiske poten-
tiale skrev jeg et lille notat pa 8 sider om
dens gruppeteori, der forklarer lgsnings-
metoderne. Som den eneste danskspro-
gede vejledning blev den i kopier spredt
overalt. Det endte med, at jeg udgav en
lille bog om terningen i juni 1981, — den
solgte 25000 eksemplarer pa 3 mdr.

11985 havde Chr. U. Jensen med hjem
fra USA en variant med 64 = 43 ter-
ninger, kaldet “Rubik’s Revenge,” som
han forzerede mig. Der var ingen opskrift,
sa jeg bestemte dens gruppe og publice-
rede lgsningen i Am. Math. Monthly i juli
1986. Selv om det ikke er min mest cite-
rede artikel, kandiderer den til at veere
min mest leste. (Den konkurrerer med
artiklen om pentominoerne pa ruderen.
Der udkom en piratoversattelse pa kine-
sisk!)

Det viste sig, at i vor forstand er Ru-
bik’s Revenge simplere end den oprinde-
lige terning, idet gruppen er et direkte
produkt af to undergrupper, der hver for
sig er simplere end gruppen for Rubiks
terning! (Som ikke kan spaltes i et direkte
produkt.) Det betyder, at det er lige me-
get, hvilke terninger man fgrst ordner,
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Det er Rubiks cube pd billedet

hvad der jo ikke er oplagt.

En pudsighed bgr naevnes. 100 ar for
red 15—klodsspillet verden som en mare.
Det er en 2—-dimensional permutationsop-
gave, hvor man laegger 15 kvadrater pa
et stgrre kvadrat, der er 4 x 4 kvadrater
stort. Nu ma man skyde et kvadrat over
pa den ubesatte plads. Man kan kun ud-
fgre lige permutationer, hvis den tomme
plads skal begynde og ende samme sted,
typisk i nederste hgjre hjgrne. Hvis man
derfor laegger de nummererede kvadrater
tilfeeldigt op, er der sandsynligheden %
for, at de kan ordnes i rackkefglge, 1-15.
Det, at nogle blev desperate over umulig-
heden, fik Julius Petersen til at forsgge
at forklare permutationers fortegn i Illu-
streret Tidende. Og det bar frugt. Da
jeg som barn blev praesenteret for lege-
tgjet hos min nabo, fortalte han, at hvis
man byttede om pa to af brikkerne, sa
kunne puslespillet ikke leengere lgses.

Lad mig slutte med at udfordre lae-
seren! Binomialkoefficienter er som alle
hele tal enten lige eller ulige. Et spgrgsmal,
hvis nytteveerdi fortaber sig i tagerne, men
hvis lgsning kraever subtil matematik, er:
Hvad er sandsynligheden for, at en tilfeel-
dig binomialkoelfficent er (u)lige?
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Lucky Numbers
and 2181

Martin Gardner

This column is devoted to mathematics
for fun. What better purpose is there
Jor mathematics? To appear here,

a theorem or problem or remark does
not need to be profound (but it is
allowed to be); it may not be directed
only at specialists; it must attract
and fascinate.

We welcome, encourage, and
frequently publish contributions
Sfrom readers—either new notes, or
replies to past columns.

Dette er en direkte
gengivelse af en artikel
fra Mathematical
Intelligencer, vol 19,
nummer 2, 1997.

Please send all submissions to the
Mathematical Entertainments Editar,
Alexander Shen, Institute for Problems of
Information Transmission, Ermolovoi 19,
K-51 Moscow GSP-4, 101447 Russia;
e-mail:shen@landau.ac.ru

When I was told that Martin Gardner had submitted an article for the
Entertainments column, I tried to remember when I had heard his name for
the first time. I failed: it seemed that Gardner’s books had always been there.
I remember my high school friends playing the game of Hex or following the
evolution of Life; we learned about these games (as well as many other things)
from Russian translations of Gardner’s books.

I have on my bookshelf two editions of the Russian translation of ks book
“Mathematics: Magic and Mystery”; the second edition (1967) was printed in
100,000 copies; the fifth one (1986) in 700,000 copies. I don't know whether
Gardner got a cent of royalties from Soviet publishers, but the deep gratitude
of millions of his Soviet readers is unquestionable.

Let me thank Dr. Gardner for his existence—and for sending an article for

this column!

he house where I grew up as a

child in Tulsa, Oklahoma, has an
address of 2187 S. Owasso. Of course
[ never forgot this number. Many years
ago, when I was visiting my imaginary
friend Dr. Irving Joshua Matrix, the
world’s most famous numerologist, I
asked him if there was anything re-
markable about 2187.

He immediately replied: “It is 3
raised to the power of 7. If you write
it in base 3 notation it is 10,000,000."

“I'm amazed you would know that!”
I exclaimed. “Anything else unusual
about 2187?"

“My dear chap,” Dr. Matrix re-
sponded with a heavy sigh, “every
number has endless unusual proper-
ties. Exchange the last two digits of
2187 to make 2178, multiply by 4, and
you get 8712, the second number back-
ward. Take 2187 from 9999 and the re-
sult is 7812, its reversal. Multiplying 21
by 87 produces 1827, the same digits in
a different order. And have you noticed
that the first four digits of the constant
e, 2718, and the number of cubic inches
in a cubic foot, 12% = 1728, are each
permutations of 2187? You might ask
your readers how quickly they can in-
sert plus or minus signs inside 2187 to
make the expression add to zero.”

I was struggling to jot all this down
on my notepad when Dr. Matrix added:
“And 2187 is, of course, one of the
lucky numbers.”

I had never heard of lucky numbers.
What follows is a summary of what I

learned about them from Dr. Matrix,
and from the references listed at the
end of this article.

The notion of lucky numbers origi-
nated about 1955 with Stanislaw Ulam,
the great Polish mathematician who co-
invented the H-bomb and was the father
of cellular automata theory. It is one of
the most studied types of what are
called “sieve numbers.” The oldest,
most important sieve numbers are the
primes. They are called sieve numbers
because they can be generated by what
is known as the Sieve of Erathosthenes.

Imagine all the positive integers
written in counting order. Cross out
all multiples of 2, except 2. The next
uncrossed-out number is 3. Cross
out all multiples of 3, except 3.
Continue in this way, sieving out
multiples of 5, 7, 11, and so on. The
numbers that remain (except for the
special case of 1) are the primes.

The sieving process is slow and te-
dious, but if continued to infinity it will
identify every prime.

Using a sieve for generating lucky
numbers is similar. Curiously, it pro-
duces numbers closely related to
primes even though they are mixtures
of primes and composites (non-
primes). Here is how the procedure
works.

Step 1: Cross out every second num-
ber: 2,4, 6, 8, . . ., leaving only the
odd integers.
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Step 2: Note that the second un-
crossed-out integer is 3. Cross out
every third number not yet elimi-
nated: 5, 11, 17,23, . . . .

Step 3: The third surviving number
from the left is 7. Cross out every
seventh integer not yet crossed out:
19,39, . ...

Step 4: The fourth number from the
left is 9. Cross out every ninth num-
ber not yet eliminated, starting with
27.

As you continue in this fashion you
will see that certain integers perma-
nently escape getting killed. Ulam
called them “lucky numbers.” Figure 1
lists all the luckies less than 1,000.

Eratosthenes’s sieve abolished all
numbers except the primes. The pro-
cedure is based on division. Ulam's
sieve, on the contrary, is based entirely
on a number's position in the counting
series. Using Eratosthenes’s sieve you
have to count every integer as you go
along. Using Ulam’s sieve you count
only the integers not previously elimi-
nated.

Although the luckies are identified
by a sieving process completely differ-
ent from Eratosthenes's sieve, the
amazing thing is that luckies share
many properties with primes. The den-
sity of luckies in a given interval among
the counting numbers is extremely
close to the density of primes in the
same interval. For example, there are
25 primes less than 100, and 23 luckies
less than 100. The overall asymptotic
density for each type of number is the
same!

The distances between successive
primes and the distances between suc-
cessive luckies keep growing longer as
the numbers grow in size. These dis-
tances also are almost the same for
both number types. The number of
twin primes—primes that differ by 2—

The most notorious unsolved prob-
lem involving primes, now that Fermat’s
last Theorem has been proved, is the
Goldbach conjecture. It states that every
even number greater than 2 is the sum
of two primes. There is a similar un-
solved conjecture about luckies: that
every even number is the sum of two
luckies, This has been computer tested
for integers up to 100,000, and perhaps
further than that, in recent years, with-
out finding an exception.

In a 1996 booklet about number prob-
lems, Charles Ashbacher, of Cedar
Rapids, lowa, conjectures that every
lucky number appears at the tail of a
larger lucky. For example, 7 is at the end
of 37; 9 at the end of 49; 15 at the end
of 615; and so so on. Lucky 87 is at the
end of my old house number 2187.
Lucky 579 is at the end of lucky 96579.
Ashbacher wrote a computer program
that verified his conjecture for 22 of the
first 100 luckies. This suggests, he
writes, that his conjecture is a good bet.

It is easy to determine if certain
large numbers are not lucky. Consider
98765. We can quickly tell it is not
lucky because it has a digital root of 8.
The digital root of a number is its
equivalence modulo 9—that is, the re-
mainder when divided by 9. If there is
no remainder, the digital root is 9. A
digital root is quickly obtained by
adding the digits of a number, then
adding again if the sum has more than
one digit, and continuing this way un-
til just one digit remains. Lucky num-
bers display all digital roots except 2,
5, and 8. Why? Because all numbers
with those three digital roots have the
form 3k + 2 and the first two sieving
steps eliminate them all.

Dr. Matrix called my attention to the
curious fact that 13, considered the

most unlucky of all numbers, is the
fifth lucky, the sixth prime, and the
seventh Fibonacei number.

A few weeks after my meeting with
Dr. Matrix I received from him a fax
message listing the following identi-
ties:

2187 + 1234 = 3421

2187 + 12345 = 14532

2187 + 123456 = 125643

2187 + 1234567 = 1236754
2187 + 12345678 = 12347865
2187 + 123456789 = 123458976

Note how the sums on the right are
permutations of the numbers added to
2187.

It has been proved that no polyno-
mial formula will generate only primes,
and I would guess that the same is true
for the luckies. However, simple qua-
dratic formulas will generate se-
quences of primes and luckies. One
way to search for such formulas was
invented by Ulam. On a square grid
write the integers in a spiral fashion as
shown in Figure 2, and indicate the
luckies by color. Note that nine luck-
ies clump along a diagonal. Applying
the calculus of finite differences to
thase luckies we discover that they are
generated by 422 + 2x + 1, as x takes
the values -3, -2, —1, 0, 1, 2, 3, 4, 5.

The spiral can start with any higher
number to reveal clumps along differ-
ent diagonals. Leonhard Euler found
that 2% + & + 41 generates forty primes
by letting x take values 0 through 39.
If you write the integers in a spiral
starting with 41, these primes will fill
the entire diagonal of a 40 X 40 grid!
Is there a quadratic formula equally
rich, or perhaps even richer, in finding
a clump of luckies? I will be interested

1 379131521 25 31 33 37 43 49 51 63

is close to the number of twin luckies.

: : i 67 63 73 75 79 87 93 99 105 111 115 127 129 133 135
There are eight twin primes less than 141 151 159 163 169 171 189 193 135 201 205 211 219 223 231
100, and seven twin luckies in the same 235 237 241 259 261 267 273 283 235 289 297 303 307 319 321

327 331 339 349 357 361 367 385 331 393 399 409 415 421 427

interval. Although primes play a much

429 433 451 463 475 477 483 487 489 495 511 517 519 529 535

more significant role in number theory 537 541 553 559 577 579 583 591 601 613 615 619 621 631 639
- P 643 645 651 655 673 679 685 693 699 717 723 727 729 735 739

than luckies, the similarities suggest 741 745 769 777 781 787 801 805 8.9 823 831 841 855 867 813
that many of the properties of primes 883 885 895 897 903 925 927 931 933 937 957 961 975 979 981

991 993 997

Figure 1. A computer printout of lucky numbers less than 1 »000, supplied by Charles

Ashbacher. Note that '99 will be a lucky year.
o
=)

are less unique than previously as-
sumed. Their properties may be more
a product of sieving than anything else!

8 1mat 36/08




@--—112-—113--]14 “HU3H- 116

=117 118~ 11911201121 >

@-- 74 7576 4+ 77 1

— 78 =~ 79 =T~ 80 —- 81 -~ 82

- 16 (15

I I I
—14—-@ 3 | 55 | 88

- 35 =1 34 -

1
109 | 72 ,-—44-—-45--—46--47--43--.—-50 83
=1 © i
08 | 71 | a2 @--22--23--24-{—25——26 s1 | 84
=1 -1
107 | 70 | a1 | 20 @--8-'{:}--") 27 | 52 | 8s
O T e T L L
106 | (69)| 40 [ 19 | 6 @--2 11| 28| 53| 86
1 1 1 L 1 1 1 1 1
I i 5 I I I 1 I
105 | 68 | 39 | 28 5-|-4-—© 12 | 29 | 54
1
1 I
104 38
I
66
1
1

2ED) g nk? -@ %

1
65 = 64 {63 62 1 61 -

102

= 60 =1 59 T 58 - 57

101100991 98 - 97 - 96

—95——94--92--91

Figure 2. Ulam’s spiral technique for finding Quadratic lucky-rich formulas.

in hearing from any reader who finds
such a formula.

There is a classic proof by Euclid
that there is an infinity of primes.
Although it is easy to show there is also
an infinity of lucky numbers, the ques-
tion of whether an infinite number of
luckies are primes remains, as far as |
know, unproved. Also unsolved is
whether there is an infinity of twin
luckies.

Dr. Matrix enjoys practical jokes.
When we talked about 2187 he pointed
out that if this number is divided by
9999 the quotient is .218721872187. . ..
I was momentarily surprised until I re-
alized that any integer of n digits, not
made entirely of nines, when divided
by a number consisting of n nines, pro-
duces a decimal fraction in which the
original number is repeated endlessly
as the quotient’s period.

“Ulam discovered lucky numbers
with his lucky imagination,” Dr. Matrix
added. “Note the letters at positions 2,
1, 8, and 7 in LUCKY IMAGINATION.
What do they spell?”

The first three lucky numbers are 1,
3, and 7. Now 137 not only is a prime
but it is one of the most interesting of
all three-digit numbers. It is, of course,
the notorious fine-structure constant,

the most mysterious of all constants in
physics. I mentioned this to Dr. Matrix.
This prompted him to talk for twenty
minutes about 137. Here are some
highlights of what he said:

Check the King James Bible’s first
chapter, third verse, and seventh word.
The word is “light.” Dr. Matrix re-
minded me that the fine-structure con-
stant is intimately connected with
light.

The reciprocal of 137, or 1 divided
by 137, produces the decimal fraction
007299270072992700. . . . The period
is a palindrome!

Partition 137 into 13 and 7. The thir-
teenth letter of the alphabet is M and
the seventh is G—my two initials!

Chlorophyll, which takes light from
the sun to give energy to plants, is
made of exactly 137 atoms.

Dr. Matrix asked me to write my old
house number twice, 21872187, and
put the number into my hand calcula-
tor. This number, he informed me, is
exactly divisible by 137. I performed
the division and sure enough, the read-
out displayed the integer 159651. I got
an even greater surprise when Dr. ma-
trix asked me to turn the calculator up-
side down. The number was the same
inverted!

Dr. Matrix next asked me to divide
159651 by 73. The result was 2187! 1
later discovered that this was another
of Dr. Matrix’s hoaxes. Any number of
the form of ABCDABCD is evenly di-
visible by 137 and 73. The reason?
ABCDABCD is the product of ABCD
and 10001. The two prime factors of
10001 are 137 and 73, so dividing
ABCABCD by those two numbers will
naturally restore ABCD. Of course the
quotient after the first division is not
likely to be invertible.

“Is there any connection,” I asked,
“between the lucky numbers and 666,
the famous number of the Beast in
New Testament prophecy?”

Dr. Matrix put his fingertips to-
gether and closed his emerald eyes for
a full minute before he spoke.

“Consider your old house number
2187, and the first four luckies 1, 3, 7,
9. Omit the 1 in each number to leave
287 and 379. Add the two numbers and
you get 666. By the way, I forgot to
mention earlier that if you divide 18,
the middle digits of 2187, by 27, the
first and last digits, the quotient is

I conclude with a mind-reading trick
of my own that involves 2187. Ask
someone to put this number into a cal-
culator’'s display. With your back
turned, tell him to multiply it by any
number he likes without revealing this
number to you. He next calls out, in
any order, each digit in the product ex-
cept one nonzero digit. You at once
name the missing digit.

How do you do it? As he calls out
digits, keep adding them in your head
until you know the digital root of their
sum. This is easily done by casting out
nines as explained earlier. If the digi-
tal root is 9, he omitted 9. If less than
9, he left out a digit equal to the dif-
ference between 9 and the digital root.
For example, if the digital root is 2, he
omitted 7.

I leave it to you to figure out why
this always works with 2187. Hint: 2187
has a digital root of 9.
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at gengive den.

You, my friend, are about to witness the best card trick there is.
Here, take this ordinary deck of cards, and draw a hand of five
cards from it. Choose them deliberately or randomly, whichever
you prefer - but do not show them to me! Show them instead to
my lovely assistant, who will now give me four of them, one at
a time: the T8, then the QC, the 8, the 3<>. There is one card
left in your hand, known only to you and my assistant. And
the hidden card, my friend, is the K #.

Surely this is impossible. My lovely assistant passed me
four cards, which means there are 48 cards left that could
be the hidden one. I did receive a little information: the
four cards came to me one at a time, and by varying that
order my assistant could signal one of 4! = 24 messages.
It seems the bandwidth is off by a factor of two. Maybe
we are passing one extra bit of information illicitly? No,
I assure you: the only information I have is a sequence of
four of the cards you chose, and I can name the fifth one.

The Story

If you haven’t seen this trick before, the effect really is
remarkable; reading it in print does not do it justice. (I
am forever indebted to a graduate student in one audi-
ence who blurted out “No way!” just before I named the
hidden card.) Please take a moment to ponder how the
trick could work, while I relate some history and delay
giving away the answer for a page or two. Fully appreci-
ating the trick will involve a little information theory and
applications of the Birkhoff-von Neumann theorem and
Hall’s Marriage theorem. One caveat, though: fully ap-
preciating this article involves taking its title as a bit of
showmanship, perhaps a personal opinion, but certainly
not a pronouncement of fact!

The trick appeared in print in Wallace Lee’s book “Math
Miracles” ! in which he credits its invention to William
Fitch Cheney, Jr., a.k.a. “Fitch”. Fitch was born in
San Francisco in 1894, son of a professor of medicine at
Cooper Medical College, which later became the Stanford
Medical School. After receiving his B.A. and M.A. from
the University of California in 1916 and 1917, Fitch spent

eight years working for the First National Bank of San
Francisco and then as statistician for the Bank of Italy. In
1927 he earned the first math Ph.D. ever awarded by MIT;
it was supervised by C.L.E. Moore and entitled “Infinites-
imal deformation of surfaces in Riemannian space.” Fitch
was an instructor and assistant professor in mathematics
at Tufts from 1927 until 1930, and thereafter a full profes-
sor and sometimes department head, first at the Univer-
sity of Connecticut until 1955 and then at the University
of Hartford (Hillyer College before 1957) until his retire-
ment in 1971; he remained an adjunct until his death in
1974.

For a look at his extra-mathematical activities, I am in-
debted to his son Bill Cheney, who writes:

My father, William Fitch Cheney, Jr., stage-name “Fitch the
Magician,” first became interested in the art of magic when at-
tending vaudeville shows with his parents in San Francisco in
the early 1900s. He devoted countless hours to learning slight-
of-hand skills and other “pocket magic” effects with which to
entertain friends and family. From the time of his initial teach-
ing assignments at Tufts College in the 1920s, he enjoyed intro-
ducing magic effects into the classroom, both to illustrate points
and to assure his students” attentiveness. He also trained him-
self to be ambidextrous (although naturally left-handed), and
amazed his classes with his ability to write equations simulta-
neously with both hands, meeting in the center at the “equals”
sign.

Each month the magazine M-U-M, official publication of
the Society of American Magicians, includes a section of
new effects created by society members, and “Fitch Ch-
eney” was a regular by-line. A number of his contribu-
tions have a mathematical feel. His series of seven “Men-
tal Dice Effects” (beginning Dec. 1963) will appeal to any-
one who thinks it important to remember whether the
numbers 1, 2, 3 are oriented clockwise or counterclock-
wise about their common vertex on a standard die. “Card
Scense” (Oct. 1961) encodes the rank of a card (possibly a
joker) using the fourteen equivalence classes of permuta-
tions of abed which remain distinct if you declare ac = ca
and bd = db as substrings: the card is placed on a piece
of paper whose four edges are folded over (by the ma-
gician) to cover it, and examining the creases gives pre-
cisely that much information about the order in which
they were folded 2.

1Published by Seeman Printery, Durham, N.C., 1950; Wallace Lee’s Magic Studio, Durham, N.C., 1960; Mickey Hades International, Calgary,

1976.

2This sort of “Purloined Letter ”-style hiding of information in plain sight is a cornerstone of magic. From that point of view, the “real” version
of the five-card trick secretly communicates the missing bit of information; Persi Diaconis tells me there was a discussion of ways to do this in the
late 1950s. For our purposes we'll ignore these clever but non-mathematical ruses.
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While Fitch was a mathematician, the five card trick was
passed down via Wallace Lee’s book and the magic com-
munity. (I don’t know whether it appeared earlier in M-
U-M or not.) The trick seems to be making the rounds of
the current math community and beyond thanks to math-
ematician and magician Art Benjamin, who ran across a
copy of Lee’s book at a magic show, then taught the trick
at the Hampshire College Summer Studies in Mathemat-
ics program 2 in 1986. Since then it has turned up reg-
ularly in “brain teaser” puzzle-friendly forums; on the
rec.puzzles newsgroup, I once heard that it was posed to
a candidate at a job interview. It made a recent appear-
ance in print in the “Problem Corner” section of the Jan-
uary 2001 Emissary, the newsletter of the Mathematical
Sciences Research Institute, and as a result of writing this
column I am learning about a slew of papers in prepara-
tion that discuss it as well. It is a card trick whose time
has come.

The Workings

Now to business. Our “proof” of impossibility ignored
the other choice my lovely assistant gets to make: which
of the five cards remains hidden. We can put that choice
to good use. With five cards in your hand, there are cer-
tainly two of the same suit; we adopt the strategy that
the first card my assistant shows me is of the same suit
as the card that stays hidden. Once I see the first card,
there are only twelve choices for the hidden card. But a
bit more cleverness is required: by permuting the three
remaining cards my assistant can send me one of only 3!
= 6 messages, and again we are one bit short.

The remaining choice my assistant makes is which card
from the same-suit pair is displayed and which is hid-
den. Consider the ranks of these cards to be two of the
numbers from 1 to 13, arranged in a circle. It is always
possible to add a number between 1 and 6 to one card
(modulo 13) and obtain the other; this amounts to going
around the circle “the short way.” In summary, my assis-
tant can show me one card and transmit a number from 1
to 6; I increment the rank of the card by the number, and
leave the suit unchanged, to identify the hidden card.

It remains only for me and my assistant to pick a conven-
tion for representing the numbers from 1 to 6. First totally
order a deck of cards: say initially by rank, A23...JQK,
and break ties by ordering the suits in bridge (= alphabet-
ical) order, & & O &. Then the three cards can be thought
of as smallest, middle, and largest, and the six permuta-
tions can be ordered, e.g., lexicographically *.

Now go out and amaze (and illuminate °) your friends.
But please: just make sure that you and your own lovely
assistant agree on conventions and can name the hidden
card flawlessly, say 20 times in a row, before you try this
in public. As we saw above, it’s not hard to name the

hidden card half the time - and it’s tough to win back
your audience if you happen to get the first one wrong. (I
speak, sadly, from experience.)

The Big Time

Our scheme works beautifully with a standard deck, al-
most as if four suits of thirteen cards each were chosen
just for this reason. While this satisfied Wallace Lee, we
would like to know more. Can we do this with a larger
deck of cards? And if we replace the hand size of five
with n, what happens?

First we need a better analysis of the information passing.
My assistant is sending me a message consisting of an or-
dered set of four cards; there are 52 x 51 x 50 x 49 such
messages. Since I see four of your cards and name the
tifth, the information I ultimately extract is an unordered
set of five cards, of which there are () which for compar-
ison we should write as 52 x 51 x 50 x 49 x 48/5!. So there
is plenty of extra space: the set of messages is 12 = 2.5
times as large as the set of situations. Indeed, we can see
some of that slop space in our algorithm: some hands are
encoded by more than one message (any hand with more
two cards of the same suit), and some messages never get
used (any message which contains the card it encodes).

Generalize now to a deck with d cards, from which
you draw a hand of n. Calculating as above, there are
d(d —1)---(d — n + 2) possible messages, and (%) pos-
sible hands. The trick really is impossible (without sub-
terfuge) if there are more hands than messages, i.e. unless
d<n!4+n-—1.

The remarkable theorem is that this upper bound on d
is always attainable. While we calculated that there are
enough messages to encode all the hands, it is far from
obvious that we can match them up so each hand is en-
coded by a message using only the n cards available! But
we can; the n = 5 trick, which we can do with 52 cards,
can be done with a deck of 124. I will give an algorithm in
a moment, but first an interesting nonconstructive proof.

The Birkhoff-von Neumann theorem states that the con-
vex hull of the permutation matrices is precisely the set
of doubly stochastic matrices: matrices with entries in [0, 1]
with each row and column summing to 1. We will use the
equivalent discrete statement that any matrix of nonneg-
ative integers with constant row and column sums can be
written as a sum of permutation matrices ®. To prove this
by induction (on the constant sum) one need only show
that any such matrix is entrywise greater than some per-
mutation matrix. This is an application of Hall’s Mar-
riage theorem, which states that it is possible to arrange
suitable marriages between n men and n women as long
as any collection of k¥ women can concoct a list of at least
k men that someone among them considers an eligible

3Unpaid advertisement: for more information on this outstanding, intense, and enlightening introduction to mathematical thinking for talented
high school students, contact David Kelly, Natural Science Department, Hampshire College, Amherst, MA 01002, or dkelly@hampshire.edu.

4For some reason I personally find it easier to encode and decode by scanning for the position of a given card: place the smallest card in the
left/middle/right position to encode 12/34/56 respectively, placing medium before or after large to indicate the first or second number in each
pair. The resulting order sml, slm, msl, Ism, mls, Ims is just the lex order on the inverse of the permutation.

5If your goal is to confound instead, it is too transparent always to put the suit-indicating card first. Fitch recommended placing it (i mod 4)th

for the ith performance to the same audience.
®Exercise: do so for your favorite magic square.
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bachelor. To apply this to our nonnegative integer ma-
trix, say that we can marry a row to a column only if their
common entry is nonzero. The constant row and column
sums ensure that any k rows have at least £ columns they
consider eligible.

Now consider the (very large) 0-1 matrix with rows in-
dexed by the (%) hands, columns indexed by the d!/(d —
n+1)! messages, and entries equal to 1 indicating that the
cards used in the message all appear in the hand. When
we take d to be our upper bound of n! + n — 1, this is a
square matrix, and has exactly n! 1’s in each row and col-
umn. We conclude that some subset of these 1’s form a
permutation matrix. But this is precisely a strategy for me
and my lovely assistant - a bijection between hands and
messages which can be used to represent them. Indeed,
by the above paragraph, there is not just one strategy, but
at least n!.

Perfection

Technically the above proof is constructive, in that the
proof of Hall’s Marriage theorem is itself a construction.
But with n = 5 the above matrix has 225,150,024 rows
and columns, so there is room for improvement. More-
over, we would like a workable strategy, one that we have
a chance at performing without consulting a cheat sheet
or scribbling on scrap paper. The perfect strategy be-
low I learned from Elwyn Berlekamp, and I've been told
that Stein Kulseth and Gadiel Seroussi came up with es-
sentially the same one independently; likely others have
done so too. Sadly, I have no information on whether
Fitch Cheney thought about this generalization at all.

Suppose for simplicity of exposition that n = 5. Number
the cards in the deck 0 through 123. Given a hand of five
cards ¢y < ¢1 < ¢z < c3 < ¢4, My assistant will choose ¢;
to remain hidden, where i = ¢y + ¢1 + ¢o + ¢3 + ¢4 mod 5.

To see how this works, suppose the message consists of
four cards which sum to s mod 5. Then the hidden card
is congruent to —s + ¢ mod 5 if it is ¢;. This is precisely
the same as saying that if we renumber the cards from
0 to 119 by deleting the four cards used in the message,
the hidden card’s new number is congruent to —s mod
5. Now it is clear that there are exactly 24 possibilities,

and the permutation of the four displayed cards com-
municates a number p from 0 to 23, in “base factorial:”
p = di11! + d»2! + d33!, where for lex order, d; < i counts
how many cards to the right of the n — ith are smaller
than it 7. Decoding the hidden card is straightforward:
let s be the sum of the four visible cards and calculate p
as above based on their permutation, then take 5p+(—s
mod 5) and carefully add 0, 1, 2, 3, or 4 to account for
skipping the cards that appear in the message ®.

Having performed the 124-card version, I can report that
with only a little practice it flows quite nicely. Berlekamp
mentions that he has also performed the trick with a deck
of only 64 cards, where the audience also flips a coin: af-
ter seeing four cards he both names the fifth and states
whether the coin came up heads or tails. Encoding and
decoding work just as before, only now when we delete
the four cards used to transmit the message, the deck has
60 cards left, not 120, and the extra bit encodes the flip of
the coin. If the 52-card version becomes too well known,
I may need to resort to this variant to stay ahead of the
crowd.

And finally a combinatorial question to which I have no
answer: how many strategies exist? We probably ought
to count equivalence classes modulo renumbering the
underlying deck of cards. Perhaps we should also ignore
composing a strategy with arbitrary permutations of the
message - so two strategies are equivalent if, on every
hand, they always choose the same card to remain hid-
den. Calculating the permanent of the aforementioned
225,150,024-row matrix seems like a bad way to begin. Is
there a good one?

Acknowledgments: Much credit goes to Art Benjamin
for popularizing the trick; I thank him, Persi Diaconis,
and Bill Cheney for sharing what they knew of its history.
In helping track Fitch Cheney from his Ph.D. through his
mathematical career, I owe thanks to Marlene Manoff,
Nora Murphy, Gregory Colati, Betsy Pittman, and Ethel
Bacon, collection managers and archivists at MIT, MIT
again, Tufts, Connecticut, and Hartford, respectively. Fi-
nally, you can’t perform this trick alone. Thanks to my
lovely assistants: Jessica Polito (my wife, who worked
out the solution to the original trick with me on a long
winter’s walk), Benjamin Kleber, Tara Holm, Daniel Biss,
and Sara Billey.
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7Or, my preference (cf. footnote 4), di counts haw many cards larger than the ith smallest appear to the left of it. Either way, the conversion

feels natural after practicing a few times.

8Exercise: verify that if your lovely assistant shows you the sequence of cards 37, 7, 94, 61 then the hidden card’s number is a root of

23 — 1822 — 748z — 456.
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Denne artikel stammer fra Mathematical Intelligencer, volume
20, nummer 3, 1998. Vi takker Springer Verlag for tilladelse til
at gengive den.

In this issue I present a collection of nice proofs that are
based on some kind of a probabilistic argument, though
the statement doesn’t mention any probabilities. First a
simple geometric example.

(1) It is known that ocean covers more than one half of the
Earth’s surface. Prove that there are two symmetric points cov-
ered by water.

Indeed, let X be a random point. Consider the events
”X is covered by water” and "—X is covered by water”.
(Here — X denotes the point antipodal to X). Both events
have probability more than 1/2, so they cannot be mutu-
ally exclusive.

Of course, the same (trivial) argument can be explained
without any probabilities. Let W C S? be the subset of
the sphere covered by water, and let 4(X) be the area
of a region X C S2 Then p(W) + u(—=W) > u(S?), so
wn(=W) #0.

However, as we see in the following examples, probabil-
ity theory may be more than a convenient language to
express the proof.

(2) A sphere is colored in two colors: 10% of its surface is white,
the remaining part is black. Prove that there is a cube inscribed
in the sphere such that all its 8 vertices are black.

Indeed, let us take a random cube inscribed in the sphere.
For each vertex the probability of the event “vertex is
white” is 0.1. Therefore the event “there exists a white
vertex” has probability at most 8 x 0.1 < 1, therefore the
cube has 8 black vertices with a positive probability.

This argument assumes implicitly that there exists a ran-
dom variable (on some sample space) whose values are
cubes with numbered vertices and each vertex is uni-
formly distributed over the sphere. The easiest way to
construct such a variable is to consider SO(3) with an in-
variant measure as a sample space. It seems that here
probability language is more important: if we did not
have probabilities in mind, why should we consider an
invariant measure on SO(3)?

Now let us switch from toy examples to more serious
ones.
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Alexander Shen:

(3) In this example we want to construct a bipartite graph with
the following properties:

(a) both parts L and R (called "left” and "right”) contain n
vertices;

(b) each vertex on the left is connected to at most eight vertices
on the right;

(c) for each set X C L that contains at least 0.5n vertices the
set of all neighbors of all vertices in X contains at least 0.7n
vertices.

(These requirements are taken from the definition of “ex-
pander graphs”; constants are chosen to simplify calcula-
tions.)

We want to prove that for each n there exists a graph that
satisfies conditions (a) - (c). For small n it is easy to draw
such a graph (e.g., for n < 8 we just connect all the ver-
tices in L and in R), but it seems that in the general case
there is no simple construction with an easy proof.

However, the following probabilistic argument proves
that such graphs do exist. For each left vertex « pick eight
random vertices on the right (some of them may coin-
cide) and call these vertices neighbors of z. All choices
are independent. We get a graph that satisfies (a) and (b);
let us prove that it satisfies (c) with positive probability.
Fix some X C L that has at least 0.5n vertices and some
Y C R that has less than 0.7n vertices. What is the prob-
ability of the event “All neighbors of all elements of X
belong to Y”? For each fixed z is an element of X the
probability that all eight random choices produce an el-
ement from Y, does not exceed (0.7)%. For different el-
ements of X choices are independent, so the resulting
probability is bounded by (0.7%)%5" = 0.74". There are
fewer than 2n different possibilities for each of the sets
X and Y, so the probability of the event “there exist X
and Y such that | X| > 0.5n, |Y] < 0.7n, and all neigh-
bors of all vertices in X belong to Y” does not exceed
2n x 2n x 0.74n = 0.982n < 1. This event embodies the
negation of the requirement (c), so we are done.

All the examples above follow the same scheme. We
want to prove that an object with some property o ex-
ists. We consider a suitable probability distribution and
prove that a random object has property o with nonzero
probability. Let us consider now two examples of a more
general scheme: if the expectation of a random variable
( is greater than some number ), some values of ¢ are
greater than .

(4) A piece of paper has area 10 square centimeters. Prove that
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Probabilistic proofs

it can be placed on the integer grid (the side of whose square is
1 cm) so that at least 10 grid points are covered.

Indeed, let us place a piece of paper on the grid randomly.
The expected number of grid points covered by it is pro-
portional to its area (because this expectation is an addi-
tive function). Moreover, for big pieces the boundary ef-
fects are negligible, and the number of covered points is
close to the area (relative error is small). So the coefficient
is 1, and the expected number of covered points is equal
to the area. If the area is 10, the expected number is 10, so
there must be at least one position where the number of
covered points is 10 or more.

(5) A stone is convex; its surface has area S. Prove that the
stone can be placed in the sunlight in such a way that the
shadow will have area at least S/4. (We assume that light is
perpendicular to the plane where the shadow is cast; if it is not,
the shadow only becomes bigger.)

Let us compute the expected area of the shadow. Each
piece of the surface contributes to the shadow exactly
twice (here convexity is used), so the shadow is half the
sum of the shadows of all pieces. Taking into account that
for each piece all possible directions of light are equiprob-
able, we see that the expected area of the shadow is pro-
portional to the area of the stone surface. To find the co-
efficient, take the sphere as an example: it has area 4?2

and its shadow has area 772, so the expected shadow area
is S/4.

(6) We finish our collection of nice probabilistic proofs
with a well-known example, so nice and unexpected that
it cannot be omitted. It is the probabilistic proof of the
Weierstrass theorem saying that any continuous function
can be approximated by a polynomial. (As far as I know, this
proof is due to S.N. Bernstein.)

Let f : [0,1] — R be a continuous function. Let p be a real
number in [0, 1]. Construct a random variable in the fol-
lowing way. Make n independent trials, the probability
of success in each of them being p. If the number of suc-
cesses is k, take f(k/n) as the value of the random vari-
able. For each p we get a random variable. Its expectation
is a function of p; let us call it f,,(p).

It is easy to see that for each n the function f,, is a polyno-
mial. (What else can we get if the construction uses only a
finite number of f-values?) On the other hand, f,, is close
to f, because for any p the ratio k/n is close to p with over-
whelming probability (assuming n is big enough); so in
most cases the value of f(k/n) is close to f(p), since f(p)
is uniformly continuous. The formal argument requires
some estimates of probabilities (Chernoff bound or what-
ever), but we omit the details.
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Denne artikel stammer fra Mathematical Intelligencer, volume
22, nummer 3, 2000. Vi takker Springer Verlag for tilladelse til
at gengive den.

The board for this game is an m x n rectangular array of
lamps. Each lamp may be on or off. Each lamp works as a
button changing the state (on/off) of the lamp and all its
neighbors. Thus the maximal number of lamps affected
by one button is five, the minimal number is three (for
the corner button). Initially all lamps are on; the goal is to
switch all the lamps off by a succession of button-pushes.

I heard about this game about ten years ago from
Michael Sipser (MIT), who told me that it is always
solvable and there is a very nice proof of this us-
ing linear algebra. Recently Prof. Oscar Martin-
Sanches and Cristobal Pareja-Flores wrote an arti-
cle about this puzzle (to appear; see also their site
http:/ /dalila.sip.ucm.es/miembros/cpareja/lo), where
they provide a detailed proof for the 5 x 5-game. (By the
way, they have found this puzzle in toy stores!)

Here is the solution using linear algebra. First of all, we
may forget about the rectangle; let V' be the set of vertices
of an arbitrary undirected graph. Each vertex has a lamp
and a button that changes the state of this lamp and all its
neighbors. The set of all configurations of lamps forms a
linear space over Z/2Z. Each vector is a function of type
V' — {0,1}. Here 1/0 means on/off, and vector addition
is performed modulo 2. The dimension of this space is
the number of lamps, i.e., |V|. For each vertex v we con-
sider a function f, that equals 1 in the neighborhood of
v and 0 elsewhere. We need to prove that the function
u that is equal to 1 everywhere can be represented as a
linear combination of functions f,.

It is enough to show that any linear functional a that
maps all f, to zero equals zero on u. Any linear func-
tional o : {0,1}V — {0,1} can be represented as a(f) =
Y{f(v)|v is an element of A} for some A C V (the sum
is computed modulo 2). Therefore the statement can be
reformulated as follows: if A has even-sized intersection
with the neighborhood of any vertex v, then | 4] is even.
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Alexander Shen:

Lights out

To see that this inference holds, consider the restriction
of our graph to A. Each vertex a is an element of A has
odd degree in the restricted graph, but the sum of the de-
grees of graph A is of course even; therefore the number
of vertices of the restricted graph, |A], is even.

We get also the criterion saying whether the
state ¢ € {0,1}V is solvable. Here it is:
Y{c(v)|v is an element of A} = 0 for any subset A C V
having even-size intersection with the neighborhood of
any vertex. (Such a set A can be called "neutral”: if we
press all buttons in A, all lamps return to their initial
state.) One may ask for an “elementary” solution; indeed
Sipser reports,

...An epilog to the lamp problem. A generalization (which may
make the problem easier) appeared in the problem section of
American Mathematical Monthly [see problem 10197, vol. 99,
no. 2, February 1992, p. 162 and vol. 100, no. 8, Oct. 93,
pp. 806-807]. A very sharp new student here (named Marcos
Kiwi) found a nice solution to it. Say that the lamps are nodes
of a given undirected graph. The button associated with a lamp
switches both its state and the state of all its neighbors. Then
we prove that there is a way to switch all states as follows. Use
induction on n (the number of nodes of the graph). First say
n is even. For each lamp, remove it, and take the inductively
given solution on the smaller graph. Replace the lamp and see
whether the solution switches it. If yes, then we are done. If
no for every lamp, then take the linear sum of all the above so-
lutions given for all the lamps. Every lamp is switched an odd
number of times (n - 1), so we are done. If n is odd, then there
must be a node of even degree. Do the above procedure for only
the nodes in the neighborhood of this node, including itself. In
addition press the button of this lamp. This also switches all
lamps an odd number of times.

Last year this problem appeared on the All-Russia Math
Olympiad. One of the participants, Ilia Meszirov, redis-
covered Kiwi’s argument. He also gave an elementary
proof (not using linear algebra) for the statement men-
tioned above (a state having even-sized intersection with
any neutral set is solvable).
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Jor fun. What better purpose is there
Jor mathematics? To appear Rere,
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Penfangram—
A New Puzzle

Klaus K{hnle

The Classic Tangram

The well-known: Chinese tangram is a
puzzie consisting of seven pieces that
can be arranged into either one square
of area 2 or two squares of area 1 each:

Although there are loads of other more
or less funny shapes that can be built
from those seven pieces, these two re-
veal best the immanent essence of the
puzzle from the mathematical point of
view: The tangram is based on V2 as
some sort of magic number. The ratic
between any two lengths cccurring as
side-lengths of the seven pieces is
some power of VE.

The right-angled, isosceles triangle
occurs in three different sizes as pieces
of the puzzle. The ratio between the hy-
potenuse and the legs of such a triangle
is V2. Furthermore, the hypotenuse of

a small triangle is just as long as the
legs of the next larger one; in other
words, the next larger triangle is scaled
by a factor of V2. As a consequence,
its area is just doubled.

The same relation holds For the
arranged squares shown above. The
side-length of the big square is equal to
the diagonals of the small squares,
which are just V2 times their side-
lengths.

Despite the triviality of all that has
been said, it ean help the solver of the
puzzle. Since V2is irrational, a length
that is the sum of a non-zerc integer
and a non-zero integer multiple of V2
can never be an integer or an integer
multiple of V2. This implies that it is
predetermined how the pieces may be
rotated in order to be useful. Thus in
the above illustration, all pieces in the
small squares are rotated by an odd
multiple of 43 in comparison with their
appearance in the big square. And the
preceding argument implies that this is
necessary.

Variants of the Same ldea

The classic tangram is based on \/Q,
the ratio between the side-length and
the diagonal of a square. The angles oc-
curting are all multiples of the angle
between a side and a diagonal, namely
I Equally welt one could design a sim-
ﬁar puzzle where the pieces have tc be
arranged to regular hexagons, and the
magic number would be \/5, the length
of the chord in a hexagon of side-
length 1. {The other chord, the diago-
nal, has length 2; and an integer magic
number would not make for a very in-
terestling puzzle.} Such a puzzle, based
ont V3, could be arranged to one big
hexagon or to three small ones, where
the cheord-lengths of the small hexa-
gons would be equal to the side-length
of the big one. Here, all angles occur-
ring should be multiples of . The sides
whose lengths are evenfodd powers of
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V'3 would have to be placed in a rotation which is an
even/odd multiple of E—"T

Another v.mant would be the arrangement of equilat-
eral {riangles with ¥ 2— which is the ratio between the height
and the side-length, as the magic number. In this case, three
big triangles would have the same area as four small ones
if cne stuck to the principle that they be scaled by the magic
number, The angles should again be multiples of the small-
est angle between the two straight lines whose ratios of
lengths define the magic number, namely .

I do not attempt to give a comprehensive survey, let me
just mention that for regular polygons with (say) 7, 9, 11,
13, or 19 sides, the ratios between chords and sides are
transcendental numbers, so I do not see any way to design
a puzzle in the same fashion from them.

The variant that attracted me most is the regular pen-
tagon, whose ratio between chord-length and side-length
veritably is a magic number, namely the golden ratio.

The Golden Ratio and its Square
The golden ratio is ubiquitous in all sorts of mathematics;
T will resist the temptation of expatiating about it. Let us
just fix upon @ as a brief name for it: ¢ = ¥ 211

As in the other variants, the puzzle shall be such that its
pieces can be arranged into a number of small pentagons
as well as into a number of big pentagons. But this time
the square of cur magic number is irrational; hence, for all
integers r and m, n pentagons of a certain size will occupy
an area different from that of m pentagons whose sizes are
scaled by . Instead, we will have to take pentagons of
three different sizes with a scaling factor of ¢ between
them. The areas of these pentagons are then 1, ¢, and ¢*
respectively, and three medium-sized pentagons have the
same area as a small and a big one together:

3¢ = 1+ ¢

How did 1 hit on this simple equality?

All that can be said about the golden ratio beils down
to the simple equation

‘002 -9 1= {}!
which is usually used as a definition for ¢ We are inter-
ested here in descriptions of ¢%; so, we just adjoin
¢ =A

and eliminate ¢ from the system of two equations. The re-
sult is

A2 —-84+1=20

which is the simplest possible statement about A.
Consequently, the above requirement that a smalt and a big
pentagon together occupy the same area as three medium-
sized ones is the simplest [ could have made.

The smallest angle between a side and a chord in the
regular pentagon is Eﬂs hence ail angles occurring shall be
multiples of ;—' In analogy to other cases, one is tempted
to conjecture that a side having 2 length that is an odd
power of ¢ has to occur in a rotation that Is an odd multi-
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ple of . But since YrE7: ¢" + @?*1 = "' 2 and any
power of @ dpart from ¢” = 1 is a sum of a nonzero inte-
ger muitiple of and a nonzero integer multiple of 5 2, such
a statement can in this case not be made. This, at least in
my opinion, adds to the spirit of symmetry accounting for
the fascination of such a puzzle.

Another consequence of Vn € Z: ¢ + ¢**! = ¢ 2isthat,
theoretically, any power of ¢ as 2 goal length can be reached
by cumulating smaller powers of ¢ regardless of how (ie,
with what powers of &) one has started to approach this goal.
Of course, this s not true in practice, because nc arbitrarily
small powers of ¢ occur as side-lengths of pieces in the puz-
Zle; but still, this principle will have its bearing.

The Details of the Pentangram

These principal features, arising from properties of the pen-
tagon and the golden ratio, do not at all determine the de-
tails. Of the many possibilities of cutting a small and a big
pentagon into pieces that can be rearranged into three
medium-sized pentagons, I rather unpremeditatedly hit on
one consisting of thirteen pieces of four different shapes
in up to three different magnifications, where, of course,
the magnification ratic is ¢

Arrangement of a big and a small pentagon:

o

Arrangement of three medium-sized pentagons (with the
same pieces)

=)

The two different shapes of triangles are the only pos-
sible ones given the obligation that all angles be multiples
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of %; the pentagon is a reminiscence of the shape that has
to be arranged; and the quadrilateral is just one of the many
alternatives with angles multiples of 7 and side-lengths
powers of ¢. ’

As in the classic tangram, this division is not the one
with the least number of pieces necessary to obtain the
two0 principal shapes, because such a minimal division
would probably ease the task of solving the puzzle; more-

Appendix: A Small Collection of Other Arrangements

PN

over it might decrease the nurnber of other shapes that can
be built. A small collection of such other shapes is given
in the appendix; the reader is invited to discover more of
them.

Mittenwalder Strale 2
0O-81377 Minchen
Giermany

i
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Stephen Leacock
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Stephen Butler Leacock
(1869-1944) er en kendt
canadisk humorist. | hans
bog “Literary lapses”

fra 1910 findes et par
noveller, som viser, at han
ma have haft kendskab til
matematik. Det er maske,
fordi han fer bogens
udgivelse havde opnaet en
PhD i skonomi og politisk
videnskab fra University of
Chicago under vejledning
af Thorstein Veblen. Gad
vide, om Leacocks forhold
til matematik har veeret
specielt harmonisk.




To noveller

A, B, and C

THE HUMAN ELEMENT IN MATHEMATICS

The student of arithmetic who has mastered the first four
rules of his art, and successfully striven with money sums
and fractions, finds himself confronted by an unbroken
expanse of questions known as problems. These are short
stories of adventure and industry with the end omitted,
and though betraying a strong family resemblance, are
not without a certain element of romance.

The characters in the plot of a problem are three people
called A, B, and C. The form of the question is generally
of this sort:

“A, B, and C do a certain piece of work. A can do as
much work in one hour as B in two, or C in four. Find how
long they work at it.”

Or thus:

“A, B, and C are employed to dig a ditch. A can dig
as much in one hour as B can dig in two, and B can dig
twice as fast as C. Find how long, etc. etc.”

Or after this wise:

“Alays a wager that he can walk faster than B or C.
A can walk half as fast again as B, and C is only an indif-
ferent walker. Find how far, and so forth.”

The occupations of A, B, and C are many and varied.
In the older arithmetics they contented themselves with
doing “a certain piece of work.” This statement of the
case however, was found too sly and mysterious, or pos-
sibly lacking in romantic charm. It became the fashion
to define the job more clearly and to set them at walking
matches, ditch-digging, regattas, and piling cord wood.
At times, they became commercial and entered into
partnership, having with their old mystery a “certain”
capital. Above all they revel in motion. When they tire
of walking-matches--A rides on horseback, or borrows a
bicycle and competes with his weaker-minded associates
on foot. Now they race on locomotives; now they TOW; Oor
again they become historical and engage stage-coaches;
or at times they are aquatic and swim. If their occupation
is actual work they prefer to pump water into cisterns,
two of which leak through holes in the bottom and one of
which is water-tight. A, of course, has the good one; he also

takes the bicycle, and the best locomotive, and the right of
swimming with the current. Whatever they do they put
money on it, being all three sports. A always wins.

In the early chapters of the arithmetic, their identity is
concealed under the names John, William, and Henry, and
they wrangle over the division of marbles. In algebra they
are often called X, Y, Z. But these are only their Christian
names, and they are really the same people.

Now to one who has followed the history of these
men through countless pages of problems, watched them
in their leisure hours dallying with cord wood, and seen
their panting sides heave in the full frenzy of filling a
cistern with a leak in it, they become something more
than mere symbols. They appear as creatures of flesh and
blood, living men with their own passions, ambitions,
and aspirations like the rest of us. Let us view them in
turn. A is a full-blooded blustering fellow, of energetic
temperament, hot-headed and strong-willed. It is he
who proposes everything, challenges B to work, makes
the bets, and bends the others to his will. He is a man of
great physical strength and phenomenal endurance. He
has been known to walk forty-eight hours at a stretch,
and to pump ninety-six. His life is arduous and full of
peril. A mistake in the working of a sum may keep him
digging a fortnight without sleep. A repeating decimal in
the answer might kill him.

B is a quiet, easy-going fellow, afraid of A and bul-
lied by him, but very gentle and brotherly to little C, the
weakling. He is quite in A’s power, having lost all his
money in bets.

Poor C is an undersized, frail man, with a plaintive
face. Constant walking, digging, and pumping has broken
his health and ruined his nervous system. His joyless life
has driven him to drink and smoke more than is good
for him, and his hand often shakes as he digs ditches. He
has not the strength to work as the others can, in fact, as
Hamlin Smith has said, “A can do more work in one hour
than C in four.”
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The first time that ever I saw these men was one
evening after a regatta. They had all been rowing in it, and
ithad transpired that A could row as much in one hour as
B in two, or C in four. B and C had come in dead fagged
and C was coughing badly. “Never mind, old fellow,” I
heard B say, “I'll fix you up on the sofa and get you some
hot tea.” Just then A came blustering in and shouted, “I
say, you fellows, Hamlin Smith has shown me three ci-
sterns in his garden and he says we can pump them until
to-morrow night. I bet I can beat you both. Come on. You
can pump in your rowing things, you know. Your cistern
leaks alittle, I think, C.” Theard B growl that it was a dirty
shame and that C was used up now, but they went, and
presently I could tell from the sound of the water that A
was pumping four times as fast as C.

For years after that I used to see them constantly about
town and always busy. I never heard of any of them eating
or sleeping. Then owing to a long absence from home, I
lost sight of them. On my return I was surprised to no
longer find A, B, and C at their accustomed tasks; on
inquiry I heard that work in this line was now done by
N, M, and O, and that some people were employing for
algebraica jobs four foreigners called Alpha, Beta, Gamma,
and Delta.

Now it chanced one day that I stumbled upon old D,
in the little garden in front of his cottage, hoeing in the
sun. D is an aged labouring man who used occasionally
to be called in to help A, B, and C. “Did I know “em, sir?”
he answered, “why, I knowed ‘em ever since they was
little fellows in brackets. Master A, he were a fine lad, sir,
though I always said, give me Master B for kind-hearte-
dness-like. Many’s the job as we’ve been on together, sir,
though I never did no racing nor aught of that, but just
the plain labour, as you might say. I'm getting a bit too
old and stiff for it nowadays, sir--just scratch about in
the garden here and grow a bit of a logarithm, or raise a
common denominator or two. But Mr. Euclid he use me
still for them propositions, he do.”

From the garrulous old man I learned the melancholy
end of my former acquaintances. Soon after I left town,
he told me, C had been taken ill. It seems that A and B
had been rowing on the river for a wager, and C had been
running on the bank and then sat in a draught. Of course
the bank had refused the draught and C was taken ill.
A and B came home and found C lying helpless in bed.
A shook him roughly and said, “Get up, C, we're going
to pile wood.” C looked so worn and pitiful that B said,
“Look here, A, I won't stand this, he isn’t fit to pile wood
to-night.” C smiled feebly and said, “Perhaps I might pile
a little if I sat up in bed.” Then B, thoroughly alarmed,
said, “See here, A, I'm going to fetch a doctor; he’s dying.”
A flared up and answered, “You've no money to fetch
a doctor.” “I'll reduce him to his lowest terms,” B said
firmly, “that’ll fetch him.” C’s life might even then have
been saved but they made a mistake about the medicine.
It stood at the head of the bed on a bracket, and the nurse
accidentally removed it from the bracket without changing
the sign. After the fatal blunder C seems to have sunk
rapidly. On the evening of the next day, as the shadows
deepened in the little room, it was clear to all that the
end was near. I think that even A was affected at the last
as he stood with bowed head, aimlessly offering to bet
with the doctor on C’s laboured breathing. “A,” whispe-
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" As the sarcophagus was lowered, the grave was surrounded
by the broken figures of the first book of Euclid”

red C, “I think I'm going fast.” “How fast do you think
you'll go, old man?” murmured A. “I don’t know,” said
C, “but I'm going at any rate.”--The end came soon after
that. C rallied for a moment and asked for a certain piece
of work that he had left downstairs. A put it in his arms
and he expired. As his soul sped heavenward A watched
its flight with melancholy admiration. B burst into a pas-
sionate flood of tears and sobbed, “Put away his little
cistern and the rowing clothes he used to wear, I feel as if
I could hardly ever dig again.”--The funeral was plain and
unostentatious. It differed in nothing from the ordinary,
except that out of deference to sporting men and mathe-
maticians, A engaged two hearses. Both vehicles started
at the same time, B driving the one which bore the sable
parallelopiped containing the last remains of his ill-fated
friend. A on the box of the empty hearse generously con-
sented to a handicap of a hundred yards, but arrived first
at the cemetery by driving four times as fast as B. (Find
the distance to the cemetery.) As the sarcophagus was
lowered, the grave was surrounded by the broken figures
of the first book of Euclid.--It was noticed that after the
death of C, A became a changed man. He lost interest in
racing with B, and dug but languidly. He finally gave up
his work and settled down to live on the interest of his
bets.--B never recovered from the shock of C’s death; his
grief preyed upon his intellect and it became deranged.
He grew moody and spoke only in monosyllables. His
disease became rapidly aggravated, and he presently
spoke only in words whose spelling was regular and
which presented no difficulty to the beginner. Realizing
his precarious condition he voluntarily submitted to be
incarcerated in an asylum, where he abjured mathematics
and devoted himself to writing the History of the Swiss
Family Robinson in words of one syllable.
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Boarding-House Geometry

DEFINITIONS AND AXIOMS
All boarding-houses are the same boarding-house.

Boarders in the same boarding-house and on the same flat are equal
to one another.

A single room is that which has no parts and no magnitude.

The landlady of a boarding-house is a parallelogram--that is, an
oblong angular figure, which cannot be described, but which is equal to
anything.

A wrang]e is the disinclination of two boarders to each other that meet
together but are not in the same line.

All the other rooms being taken, a single room is said to be a double
room.

POSTULATES AND PROPOSITIONS
A pie may be produced any number of times. The landlady can be reduced
to her lowest terms by a series of propositions.

A bee line may be made from any boarding-house to any other boar-
ding-house.

The clothes of a boarding-house bed, though produced ever so far both
ways, will not meet.

Any two meals at a boarding-house are together less than two square
meals.

If from the opposite ends of a boarding-house a line be drawn passing
through all the rooms in turn, then the stovepipe which warms the boarders
will lie within that line.

On the same bill and on the same side of it there should not be two
charges for the same thing.

If there be two boarders on the same flat, and the amount of side of
the one be equal to the amount of side of the other, each to each, and the
wrangle between one boarder and the landlady be equal to the wrangle
between the landlady and the other, then shall the weekly bills of the two
boarders be equal also, each to each.

For if not, let one bill be the greater. Then the other bill is less than it
might have been--which is absurd.
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Interview with the winners of the Abel Prize 2008:

John G. Thompson and Jacques Tits

Martin Raussen (Aalborg, Denmark) and Christian Skau (Trondheim, Norway)

Oslo, May 19, 2008

(Denne artikel udkom ferst i EMS Newsletter 69, September 2008, s. 31-38. Vi takker
for tilladelsen til at genoptrykke den.)

Early experiences

Raussen & Skau: On behalf of the Norwegian, Danish
and European Mathematical Societies we want to con-
gratulate you for having been selected as Abel Prize win-
ners for 2008. In our first question we would like to ask
you when you first got interested in mathematics:

Were there any mathematical results or theorems that
made a special impression on you in your childhood or
early youth? Did you make any mathematical discoveries
during that time that you still remember?

Tits: I learned the rudiments of arithmetic very early; I
was able to count as a small child; less than four years, I
believe. At the age of thirteen, I was reading mathematical
books thatI found in my father’s library and shortly after,

24 mat 3e/08

Istarted tutoring youngsters five years older than me who
were preparing the entrance examination at the Ecole Po-
lytechnique in Brussels. That is my first recollection.

At that time I was interested in analysis but later on, I
became a geometer. Concerning my work in those early
years, I certainly cannot talk about great discoveries, but
I think that some of the results I obtained then are not
without interest.

My starting subject in mathematical research has been
the study of strictly triple transitive groups; that was the
subject essentially given to me by my professor. The pro-
blem was this: We knew axiomatic projective geometry
in dimension greater than one. For the one-dimensional
case, nobody had given an axiomatic definition. The
one-dimensional case corresponds to PSL(2). My teacher
gave me the problem of formulating axiomatics for these
groups. The idea was to take triple transitivity as the first



axiom. So I started by this kind of problem: giving axio-
matics of projective geometry based on triple transitivity.
Of course, I was then led naturally to consider quadruple
and quintuple transitivity. That is how I rediscovered all
the Mathieu groups, except, strangely enough, the biggest
one, the quintuple transitive. Thad to rediscover that one
in the literature!

So you didn’t know about the Mathieu groups when
you did this work?

Tits: No, I didn’t.
How old were you at that time?

Tits: 18 years old, I suppose. In fact, I first found all strictly
quadruple transitive groups. They were actually known
by Camille Jordan. ButI didn’t know the work of Camille
Jordan at the time. Irediscovered that.

You must have been much younger than your fellow
students at the time. Was it a problem to adjust in an
environment where you were the youngest by far?

Tits: I am very grateful to my fellow students and also
to my family. Because I was what is sometimes called a
little genius. I was much quicker than all the others. But
nobody picked up on that, they just let it go. My father
was a little bit afraid that I would go too fast. My mother
knew that this was exceptional, but she never boasted
about it. In fact, a female neighbour said to my mother:
“If I had a son like that, I would go around and boast
about it.” My mother found that silly. I was not atall put
on a pedestal.

Hardy once said that mathematics is a young man’s
game. Do you agree?

Tits: I think that it is true to a certain extent. But there are
people who do very deep things at a later age. After all,
Chevalley’s most important work was done when he was
more than 40 years old and even perhaps later. It is not
an absolute rule. People like to state such rules. I don't
like them really.

Thompson: Well, it is true that you don’t have any
childhood geniuses in politics. But in chess, music and
mathematics, there is room for childhood exceptionalism
to come forth. This is certainly very obvious in the case of
music and chess and to some extent in mathematics. That
might sort of skew the books in a certain direction.

As far as Hardy’s remark is concerned I don’t know
what he was feeling about himself at the time he made that
remark. It could be a way for person to say: “Iam checking
out now, I reached the age where I don’t want to carry
on.” Idon’t know what the sociologists and psychologists
say; I leave it to them. I'have seen mathematicians reach
the age of 50 and still be incredible lively. I don’t see it as
a hard and fast rule. But then Tits and I are really in no
position to talk given our age.

John von Neumann said, exaggerating a little, that
whatever you do in mathematics beyond 30 is not worth
anything, at least not compared to what you had done
before 30. But when he himself reached the age of 30, he

pushed this limit. Experience comes in etc...

Thompson: But he was a prodigy. So he knows the
childhood side of it.

Tits: We all have known very young and bright ma-
thematicians. The point s that to find deep mathematics,
it is not necessary to have all the techniques. They can
find results that are deep without having all of those
techniques at hand.

ut your memories on early mathemati X-
What about yo emories on early mathematical e
periences, Professor Thompson?

Thompson: I don’t have any particularly strong me-
mories. I have an older brother, three years older than
me, who was very good at math. He was instrumental,
I guess, in interesting me in very elementary things. He
was obviously more advanced than I was.

We also played cards in our family. I liked the com-
binatorics in card play. At that time, I was 10 or 12 years
old. T also liked playing chess. I never got any good at
it but I liked it. When my brother went to the university,
he learned about calculus and he tried to explain it to me.
I found it totally incomprehensible, but it intrigued me,
though. I did get books out of the library myself. ButI
didn’t make too much progress without him.

Early group theory

You have received this year’s Abel Prize for your achie-
vements in group theory. Can we start with a short
historical introduction to the subject? We would like to
ask you to tell us how the notion of a group came up and
how it was developed during the 19th century. In fact,
Norwegian mathematicians played quite an important
role in that game, didn’t they?

Tits: Well, when you talk about groups it is natural to
talk about Galois. I think Abel did not use groups in his
theory — do you know?

Thompson: At least implicitly. I think the equation of
the fifth degree comes in there. It was a great eye opener).
I myself looked at a very well-known paper of Lagrange,
I think around 1770, before the French revolution. He
examined equations and he also said something about
equations of degree five. He was definitely getting close
to the notion of a group. I don’t know about the actual
formal definition. I guess we have to attribute it to Galois.
Anyway, it was certainly he that came up with the notion
of a normal subgroup, I am pretty sure that was Galois’
idea. He came up with the idea of a normal subgroup
which is really basic.

Tits: But the theorem on the equation of degree five
was discovered first by Abel, I think. Of course Galois
had a technique which helped with many equations of
different types that Abel did not have. Galois was really
basically an algebraist, whereas Abel was also an analyst.
When we now talk about abelian functions: these ideas
go back to Abel.

Can you explain why simple groups are so important
for the classification of finite groups in general? That
realization came about, we guess, with Camille Jordan
and his decomposition theorem. Is that correct?
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John G. Thompson

Tits: You see, I think that one of the dreams of these people
was always to describe all groups. And if you want to
describe all groups you decompose them. The factors
are then simple. I think that was one of the aims of what
they were doing. But of course they didn’t go that far. It
is only very recently that one could find all finite simple
groups, a solution to the problem to which John Thompson
contributed in a major way.

What about Sylow and Lie in the beginning of group
theory?

Thompson: Those are two other Norwegians.

Tits: Lie played an important role in my career. In
fact, practically from the beginning, the main subject of
my work has centred around the so-called exceptional Lie
groups. So the work of Lie is basic in what I have done.

Could you comment on the work of Frobenius and
Burnside?

Thompson: Of course. After the last half of the 19th cen-
tury Frobenius among other things put the theory of group
characters on a solid basis. He proved the orthogonality
relations and talked about the transfer map. Burnside
eventually got on the wagon there. And eventually he
proved his p*qP-theorem, the two prime theorem, using
character theory, namely that groups of these orders are
solvable. That was a very nice step forward, I feel. It
showed the power of character theory which Frobenius
had already done. Frobenius also studied the character
theory of the symmetric groups and multiply transitive
permutation groups. I don’t know how much he thought
of the Mathieu groups. But they were pretty curious ob-
jects that had been discovered before character theory.
For a while there was quite a bit of interest in multiply
transitive permutation groups: quite complicated combi-
natorial arguments. Burnside and Frobenius were very
much in the thick of things at that stage.

Tits: When I was a young mathematician. I was very
ignorant of the literature. For instance, I rediscovered a lot
of the results that were known about multiply transitive
groups; in particular, on the strictly 4-fold and 5-fold tran-
sitive groups. Fortunately, I did this with other methods
than the ones that were used before. So these results were
in fact new in a certain sense.
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Was it a disappointment to discover that these results
had been discovered earlier?

Tits: Not too much.

Burnside was also interesting because he posed problems
and conjectures that you and others worked on later,
right?

Thompson: Right, well I sort of got started on working on
the Frobenius conjecture, which was still open. I think it
was Reinhold Baer or maybe Marshall Hall who told me
about the Frobenius conjecture: The Frobenius kernel of
the Frobenius group was conjectured to be nilpotent. I
liked that conjecture for the following reason: If you take
the group of proper motions of the Euclidean plane, it
is a geometric fact that every proper motion is either a
translation or is a rotation. I'hope kids are still learning
that. It is a curious phenomenon. And the translations
form a normal subgroup. So that is something you could
actually trace back to antiquity.

No doubt Frobenius knew that. So when he proved his
theorem about the existence of the normal complement,
that was a link back to very old things to be traced in
geometry, I feel. That was one of the appeals. And then
the attempt to use Sylow’s theorems and a bit of character
theory, whatever really, to deal with that problem. That is
how I first got really gripped by pure mathematics.

Mathieu discovered the first sporadic simple groups,
the Mathieu groups, in the 1860’s and 1870’s. Why do
you think we had to wait one hundred years, before the
next sporadic group was found by Janko, after your paper
with Feit? Why did it take so long time?

Thompson: Part of the answer would be the flow of
history. The attention of the mathematical community
was drawn in other directions. I wouldn’t say that group
theory, certainly not finite group theory, was really at the
centre of mathematical development in the 19th century.
For one thing, Riemann came along, topology gained
and exerted tremendous influence, and as Jacques has
mentioned, analysis was very deep and attracted highly
gifted mathematicians. Itis true, as you mentioned earlier,
that Frobenius was there and Burnside; so group theory
wasn’t completely in the shadows. But there wasn’ta lot
going on.

Now, of course, there is a tremendous amount going
on, both within pure and applied mathematics. There
are many things that can attract people, really. So why
there was this gap between these groups that Mathieu
found and then the rather rapid development in the last
half of the 20th century of the simple groups, including
the sporadic groups, I have to leave that to the historians.
But I don't find it all that mysterious, really. You know,
mathematics is a very big subject.

The Feit-Thompson theorem

The renowned Feit—Thompson theorem — finite groups
of odd order are solvable - that you proved in the early
1960’s: that was originally a conjecture by Burnside,
right?



Thompson: Burnside had something about it, yes. And
he actually looked at some particular integers and proved
that groups of that order were solvable. So he made a
start.

When you and Feit started on this project were there any
particular results preceding your attack on the Burnside
conjecture that made you optimistic about being able to
prove it?

Thompson: Sure. A wonderful result of Michio Suzuki,
the so-called CA theorem. Absolutely basic! Suzuki came
to adulthood just at the end of the Second World War. He
was raised in Japan. Fortunately, he came to the Univer-
sity of Illinois. I think it was in 1952 that he published this
paper on the CA groups of odd order and proved they
were solvable by using exceptional character theory. It
is not a very long paper. But it is incredibly ingenious,
it seems to me. I still really like that paper. Iasked him
later how he came about it, and he said he thought about it
for two years, working quite hard. He finally got it there.
That was the opening wedge for Feit and me, really. The
wedge got wider and wider.

Tits: Could you tell me what a CA group is?

Thompson: A CA group is a group in which the cen-
tralizer of every non-identity element is abelian. So we
can see Abel coming in again: Abelian centralizer, that is
what the A means.

The proof that eventually was written down by Feit
and you was 255 pages long, and it took one full issue of
the Pacific journal to publish.

Thompson: It was long, yes.

It is such a long proof and there were so many threads
to connect. Were you nervous that there was a gap in
this proof?

Thompson: I guess so, right. It sort of unfolded in what
seemed to us a fairly natural way; part group theory, part
character theory and this funny little number-theoretic
thing at the end. It all seemed to fit together. But we could
have made a mistake, really. It has been looked at by a
few people since then. I don’t lose sleep about it.

It seems that, in particular in finite group theory, there
did not exist that many connections to other fields of ma-
thematics like analysis, at least at the time. This required
that you had to develop tools more or less from scratch,
using ingenious arguments. Is that one of the reasons
why the proofs are so long?

Thompson: That might be. It could also be that proofs
can become shorter. I don’t know whether that will be
the case. I certainly can’t see that the existing proofs will
become tremendously shorter in my lifetime. These are
delicate things that need to be explored.

Tits: You see, there are results that are intrinsically dif-
ficult. I would say that this is the case of the Feit-Thomp-
son result. I personally don't believe that the proof will
be reduced to scratch.

Thompson: I don’t know whether it will or not. Idon’t
think mathematics has reached the end of its tether, re-
ally.

Tits: It may of course happen that one can go around
these very fine proofs, like John’s proof, using big machi-

Jacques Tits

nery like functional analysis. That one suddenly gets a big
machine which crushes the result. That is not completely
impossible. But the question is whether it is worth the
investment.

The theory of buildings

Professor Tits, you mentioned already Lie groups as a
point of departure. Simple Lie groups had already been
classified to a large extent at the end of the 19* century,
first by Killing and then by Elie Cartan, giving rise to a
series of matrix groups and the five exceptional simple
Lie groups. For that purpose, the theory of Lie algebras
had to be developed. When you started to work on linear
algebraic groups, there were not many tools available.
Chevalley had done some pioneering work, but the pic-
ture first became clear when you put it in the framework
of buildings: this time associating geometric objects to
groups. Could you explain us how the idea of buildings,
consisting of apartments, chambers, all of these suggestive
words, how it was conceived, what it achieved and why
it has proven to be so fruitful?

Tits: First of all, I should say that the terminology like
buildings, apartments and so on is not mine. I discovered
these things, but it was Bourbaki who gave them these
names. They wrote about my work and found that my
terminology was a shambles. They put it in some order,
and this is how the notions like apartments and so on
arose.

I'studied these objects because I wanted to understand
these exceptional Lie groups geometrically. In fact, I came
to mathematics through projective geometry: what I knew
about was projective geometry. In projective geometry
you have points, lines and so on. When I started study-
ing exceptional groups I sort of looked for objects of the
same sort. For instance, I discovered — or somebody else
discovered, actually — that the group E; is the colineation
group of the octonion projective plane. And a little bit
later, I found some automatic way of proving such results,
starting from the group to reconstruct the projective plane.
I could use this procedure to give geometric interpretati-
ons of the other exceptional groups, e.g., E, and E,. That
was really my starting point.

Then I tried to make an abstract construction of these
geometries. In this construction I used terms like ske-
letons, for instance, and what became apartments were
called skeletons at the time. In fact, in one of the volumes
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of Bourbaki, many of the exercises are based on my early
work.

An additional question about buildings: This concept has
been so fruitful and made connections to many areas of
mathematics that maybe you didn’t think of at the time,
like rigidity theory for instance?

Tits: For me it was really the geometric interpretations
of these mysterious groups, the exceptional groups that
triggered everything. Other people have then used these
buildings for their own work. For instance, some analysts
have used them. Butin the beginning I didn’t know about
these applications.

You asked some minutes ago about CA groups. Maybe
we can ask you about BN-pairs: what are they and how
do they come in when you construct buildings?

Tits: Again, you see, I had an axiomatic approach
towards these groups. The BN-pairs were an axiomatic
way to prove some general theorems about simple alge-
braic groups. A BN-pair is a pair of two groups B and N
with some simple properties. I noticed that these pro-
perties were sufficient to prove, I wouldn’t say deep, but
far-reaching results; for instance, proving the simplicity
property. If you have a group with a BN-pair you have
simple subgroups free of charge. The notion of BN-pairs
arises naturally in the study of split simple Lie groups.
Such groups have a distinguished conjugacy class of sub-
groups, namely the Borel subgroups. These are the B's
of a distinguished class of BN-pairs.

The classification of finite simple groups

We want to ask you, Professor Thompson, about the
classification project, the attempt to classify all finite
simple groups. Again, the paper by Feit and you in 1962
developed some techniques. Is it fair to say that without
that paper the project would not have been doable or
even realistic?

Thompson: That I can’t say.

Tits: I would say yes.

Thompson: Maybe, but the history has bifurcations so
we don’t know what could have happened.

The classification theorem for finite simple groups was
probably the most monumental collaborative effort done
in mathematics, and it was pursued over a long period of
time. Many people have been involved, the final proof
had 10 000 pages, at least, originally. A group of people,
originally led by Gorenstein, are still working on making
the proof more accessible.

We had an interview here five years ago with the first
Abel Prize recipient Jean-Pierre Serre. At that time, he
told us that there had been a gap in the proof, that only
was about to be filled in at the time of the interview with
him. Before, it would have been premature to say that one
actually had the proof. The quasi-thin case was left.
How is the situation today? Can we really trust that
this theorem finally has been proved?

Thompson: At least that quasi-thin paper has been pub-
lished now. It is quite a massive work itself, by Michael
Aschbacher and Stephen Smith; quite long, well over

28 mat 36/08

1000 pages. Several of the sporadic simple groups come
up. They characterize them because they are needed in
quasi-thin groups. I forget which ones come up, but the
Rudvalis group certainly is among them. It is excrucia-
tingly detailed.

It seems to me that they did an honest piece of work.
Whether one can really believe these things is hard to
say. Itis such along proof that there might be some basic
mistakes. But I sort of see the sweep of it, really. It makes
sense to me now. In some way it rounded itself off. I
can sort of see why there are probably no more sporadic
simple groups; but not really conceptually. There is no
conceptual reason that is really satisfactory.

But that’s the way the world seems to be put together.
So we carry on. Ihope people will look at these papers and
see what the arguments are and see how they fit together.
Gradually this massive piece of work will take its place in
the accepted canon of mathematical theorems.

Tits: There are two types of group theorists. Those who
are like St. Thomas: they don’t believe because they have
not seen every detail of the proof. I am not like them, and
I believe in the final result although I don’t know anything
about it. The people who work on or who have worked
on the classification theorem may of course have forgotten
some little detail somewhere. But I don’t believe these
details will be very important. And I am pretty sure that
the final result is correct.

May we ask about the groups that are associated with
your names? You have a group that’s called the Thomp-
son group among the sporadic simple groups. How did
it pop up? How were you involved in finding it?

Thompson: That is in fact a spin-off from the Monster
Group. The so-called Thompson group is essentially the
centralizer of an element of order three in the Monster.
Conway and Norton and several others were beavering
away — this was before Griess constructed the Monster
— working on the internal structure where this group
came up, along with the Harada-Norton group and the
Baby Monster. We were all working trying to get the
characters.

The Monster itself was too big. I don’t think it can be
done by hand. Livingstone got the character table, the or-
dinary complex irreducible characters of the Monster. But
I think he made very heavy use of a computing machine.
And I don’t think that has been eliminated. That’s how
the figure 196883 came about, the degree of the smallest
faithful complex representation of the Monster Group. It
is just too big to be done by hand. But we can do these
smaller subgroups.

The Tits group was found by hand, wasn’t it? And what
is it all about?

Tits: Yes, it was really sort of a triviality. One expects that
there would be a group there except that one must take
a subgroup of index two so that it becomes simple. And
that is what I know about this.

Professor Tits, there is a startling connection between the
Monster Group, the biggest of these sporadic groups, and
elliptic function theory or elliptic curves via the j-func-



tion. Are there some connections with other exceptional
groups, for instance in geometry?

Tits: I am not a specialist regarding these connections
between the Monster Group, for instance, and modular
functions. I don’t really know about these things, I am
ashamed to say. I think it is not only the Monster that
is related to modular forms, also several other sporadic
groups. But the case of the Monster is especially sa-
tisfactory because the relations are very simple in that
case. Somehow smaller groups give more complicated
results. In the case of the Monster, things sort of round
up perfectly.

The inverse Galois problem

May we ask you, Professor Thompson, about your work
on the inverse Galois problem? Can you explain first
of all what the problem is all about? And what is the
status right now?

Thompson: The inverse Galois problem probably goes
back already to Galois. He associated a group to an
equation; particularly to equations in one variable with
integer coefficients. He then associated to this equation a
well-defined group now called the Galois group, which is
a finite group. It captures quite a bit of the nature of the
roots, the zeros, of this equation. Once one has the notion
of a field, the field generated by the roots of an equation
has certain automorphisms and these automorphisms
give us Galois groups.

The inverse problem is: Start with a given finite group.
Is there always an equation, a polynomial with one inde-
terminate with integer coefficients, whose Galois group
is that particular group? As far as I know it is completely
open whether or not this is true. And as a test case if you
start with a given finite simple group; does it occur in
this way? Is there an equation waiting for it? If there is
one equation there would be infinitely many of them. So
we wouldn’t know how to choose a standard canonical
equation associated to this group. Even in the case of
simple groups, the inverse problem of Galois Theory is
not solved. For the most general finite groups, I leave
it to the algebraic geometers or whoever else has good
ideas whether this problem is amenable. Alot of us have
worked on it and played around with it, but I think we
have just been nibbling at the surface.

For example the Monster is a Galois group over the
rationals. You can’t say that about all sporadic groups.
The reason that the Monster is a Galois group over the
rationals comes from character theory. It is just given to
you.

Tits: This is very surprising: you have this big object,
and the experts can tell you that it is a Galois group. In
fact, I would like to see an equation.

Is there anything known about an equation?

Thompson: It would have to be of degree of at least 10%. I
found it impressive, when looking a little bit at the j-func-
tion literature before the days of computers that people
like Fricke and others could do these calculations. If you
look at the coefficients of the j-functions, they grow very

rapidly into the tens and hundreds of millions. They had
been computed in Fricke’s book. Itis really pleasant to see
these numbers out there before computers were around.
Numbers of size 123 millions. And the numbers had to
be done by hand, really. And they got it right.

Tits: It is really fantastic what they have done.

Could there be results in these old papers by Fricke and
others that people are not aware of?
Thompson: No, people have gone through them, they
have combed through them.
Tits: Specialists do study these papers.

The E_-story

There is another collaborative effort that has been done
recently, the so-called E;—story: a group of mathematici-
ans has worked out the representations of the E. In fact,
they calculated the complete character table for E,. The
result has been publicized last year in several American
newspapers under the heading “ A calculation the size of
Manhattan” or something like that.

Thompson: It was a little bit garbled maybe. I did see
the article.

Can you explain why we all should be interested in
such a result? Be it as a group theorist, or as a general
mathematician, or even as man on the street?

Thompson: It is interesting in many ways. It may be that
physicists have something to do with the newspapers.
Physicists, they are absolutely fearless as a group. Any
mathematical thing they can make use of they will gobble
right up and put in a context that they can make use of,
which is good. In that sense mathematics is a handmaiden
for other things. And the physicists have definitely gotten
interested in exceptional Lie groups. And Ej is out there,
really. It is one of the great things.

Is there any reason to believe that some of these excep-
tional groups or sporadic groups tell us something very
important - in mathematics or in nature?

Thompson: I am not a physicist. But I know physicists
are thinking about such things, really.

Tits: It is perhaps naive to say this: But I feel that ma-
thematical structures that are so beautiful like the Monster
must have something to do with nature.

Mathematical work

Are there any particular results that you are most proud

of?

Thompson: Well, of course one of the high points of my
mathematical life was the long working relationship I had
with Walter Feit. We enjoyed being together and enjoyed
the work that we did; and, of course, the fusion of ideas.
I feel lucky to have had that contact and proud that I was
in the game there.

Tits: T had a very fruitful contact for much of my career
with Francois Bruhat and it was very pleasant to work
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together. It was really working together like you did it, I
suppose, with Walter Feit.

Was not Armand Borel also very important for your
work?

Tits: Yes, I also had much collaboration with Borel. But
that was different in the following sense: when I worked
with Borel, I had very often the impression that we both
had found the same thing. We just put the results together
in order not to duplicate. We wrote our papers practically
on results that we had both found separately. Whereas
with Bruhat, it was really joint work, complementary
work.

Has any of you had the lightning flash experience descri-
bed by Poincaré; seeing all of a sudden the solution to a
problem you had struggled with for a long time?

Tits: I think this happens pretty often in mathematical re-
search; that one suddenly finds that something is working.
But I cannot recall a specific instance. I know that it has
happened to me and it has happened to John, certainly.
So certainly some of the ideas one had works out, but it
sort of disappears in a fog.

Thompson: I think my wife will vouch for the fact that
when I wake in the morning I am ready to get out there
and get moving right away. So my own naive thinking is
that while I am asleep there are still things going on. And
you wake up and say: “Let’s get out there and do it.” And
that is a wonderful feeling.

You have both worked as professors of mathematics in
several countries. Could you comment on the different
working environments at these places and people you
worked with and had the best cooperation with?

Tits: I think the country which has the best way of working
with young people is Russia. Of course, the French have
a long tradition and they have very good, very young
people. But I think Russian mathematics is in a sense
more lively than French mathematics. French mathema-
tics is too immediately precise. I would say that these are
the two countries where the future of mathematics is the
clearest. But of course Germany has had such a history
of mathematics that they will continue. And nowadays,
the United States have in a sense become the centre of
mathematics, because they have so much money. That
they can...

...buy the best researchers?

Tits: That's too negative a way of putting it. Certainly
many young people go the United States because they
cannot earn enough money in their own country.

And of course the catastrophe that happened in Europe
in the 1930’s with Nazism. A lot of people went to the
United States.

What about you, Professor Thompson? You were in Eng-
land for a long time. How was that experience compared
to work at an American university?
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Thompson: Well, I am more or less used to holding my
own role. People didn’t harass me very much any place.
I have very nice memories of all the places I have visited,
mainly in the United States. But I have visited several
other countries, too, for shorter periods, including Russia,
Germany and France. Mathematically, I feel pretty much
comfortable everywhere I am. Ijust carry on. I have not
really been involved in higher educational decision ma-
king. So in that sense I am not really qualified to judge
what is going on at an international basis.

Thoughts on the development of mathematics

You have lived in a period with a rapid development of
mathematics, in particular in your own areas, including
your own contributions. Some time ago, Lennart Car-
leson, who received the Abel Prize two years ago, said
in an interview that the 20th century had possibly been
the Golden Age of Mathematics, and that it would be
difficult to imagine a development as rapid as we have
witnessed it.

What do you think: Have we already had the Golden
Age of Mathematics or will development continue even
faster?

Tits: I think it will continue at its natural speed, which is
fast; faster than it used to be.

Thompson: I remember reading a quote attributed to
Laplace. He said that mathematics might become so deep,
that we have to dig down so deep, that we will not be
able to get down there in the future. That’s a rather scary
image, really. It is true that prerequisites are substantial
but people are ingenious. Pedagogical techniques might
change. Foundations of what people learn might alter. But
mathematics is a dynamic thing. I'hope it doesn’t stop.

Tits: I am confident that it continues to grow.

Traditionally, mathematics has been mainly linked
to physics. Lots of motivations come from there, and
many of the applications are towards physics. In recent
years, biology, for example with the Human Genome
Project, economics with its financial mathematics,
computer science and computing have been around, as
well. How do you judge these new relations? Will they
become as important as physics for mathematicians in
the future?

Tits: I would say that mathematics coming from physics
is of high quality. Some of the best results we have in
mathematics have been discovered by physicists. Iam less
sure about sociology and human science. I think biology
is a very important subject but I don’t know whether it
has suggested very deep problems in mathematics. But
perhaps I am wrong. For instance, I know of Gromov,
who is a first class mathematician, and who is interested
in biology now. I think that this is a case where really
mathematics, highbrow mathematics, goes along with
biology. What I said before about sociology, for instance,
is not true for biology. Some biologists are also very good
mathematicians.

Thompson: I accept that there are very clever people
across the intellectual world. If they need mathematics
they come up with mathematics. Either they tell mathe-



maticians about it or they cook it up themselves.

Thoughts on the teaching of mathematics

How should mathematics be taught to young people?
How would you encourage young people to get intere-
sted in mathematics?

Thompson: I always give a plug for Gamow’s book
One Two Three ...  Infinity and

Courant and Robbins’ What is Mathematics? and some
of the expository work that you can get from the libraries.
It is a wonderful thing to stimulate curiosity. If we had
recipes, they would be out there by now. Some children
are excited, and others are just not responsive, really. You
have the same phenomenon in music. Some children are
very responsive to music, others just don’t respond. We
don’t know why.

Tits: I don’t know what to say. T have had little contact
with very young people. I have had very good students,
but always advanced students. I am sure it must be fasci-
nating to see how young people think about these things.
But I have not had the experience.

Jean-Pierre Serre once said in an interview that one
should not encourage young people to do mathematics.
Instead, one should discourage them. But the ones that,
after this discouragement, still are eager to do mathema-
tics, you should really take care of them.

Thompson: That’s a bit punitive. ButI can see the point.
You try to hold them back and if they strain at the leash
then eventually you let them go. There is something to it.
But I don’t think Serre would actually lock up his library
and not let the kids look at it.

Maybe he wants to stress that research mathematics is
not for everyone.

Thompson: Could be, yeah.

Tits: But I would say that, though mathematics is for
everyone, not everyone can do it with success. Certainly
it is not good to encourage young people who have no
gift to try to do something, because that will result in sort
of a disaster.

Personal interests

In our final question we would like to ask you
both about your private interests besides ma-
thematics. What are you doing in you spare
time? What else are you interested in?

Tits: I am especially interested in music
and, actually, also history. My wife is
a historian; therefore I am always very
interested in history.

What type of music? Which composers?
Tits: Oh, rather ancient composers.
And in history: Is that old or modern history?

Tits: Certainly not contemporary history, but modern and
medieval history. All related to my wife’s speciality.

Thompson: I would mention some of the same inte-
rests. Ilike music. I still play the piano a bit. I like to
read. Ilike biographies and history; general reading, both
contemporary and older authors. My wife is a scholar. I
am interested in her scholarly achievements. Nineteenth
century Russian literature; this was a time of tremendous
achievements. Very interesting things! I also follow the
growth of my grandchildren.

Tits: I should also say that I am very interested in lan-
guages; Russian, for instance.

Do you speak Russian?

Tits: I don’t speak Russian. But I have been able to read
some Tolstoy in Russian. I have forgotten a little. Thave
read quite a lot. I have learned some Chinese. In the
course of years I used to spend one hour every Sunday
morning studying Chinese. But I started a little bit too
old, so I forgot what I learned.

Are there any particular authors that you like?

Tits: I would say all good authors.
Thompson: I guess we are both readers. Endless.

Let us finally thank you very much for this pleasant
interview; on behalf of the Norwegian, the Danish and
the European Mathematical Societies. Thank you very
much.

Thompson: Thank you.
Tits: Thank you for the interview. You gave us many
interesting topics to talk about!
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LOSNINGER

To af opgaverne i sidste nr. er hentet fra Frederick Mosteller, Fifty Challenging Problems in
Probability with Solutions, Dover, New York 1987.
Ebbe Thue Poulsen og problemklubben “Con Amore” har lgst de to opgaver herfra.

En tryllekunst

Tryllekunstneren og hans assistent praesenterer publikum for 8 mgnter pa en raekke. Tryllekunst-
neren instruerer publikum om opgaven og forlader lokalet. Publikum valger nu for hver mgnt, om
den skal veere krone eller plat. Derefter oplyser publikum assistenten om deres foretrukne mgnt,
fx nr 5 fra venstre. Nu vender assistenten én af mgnterne om efter sit valg.

Tryllekunstneren kommer ind fra kulissen og udpeger den foretrukne mgnt.

Vi stiller mgnterne pa rakke og giver dem numre fra venstre mod hgjre, 0, 1, ..., 7. Disse
tal organiserer vi som gruppen Z3, fx ved at skrive numrene binzert fra 000 til 111 og definere
gruppeoperationen som addition uden mente — eller, om man vil, med regnereglen 1 +1 = 0. Sa fx
er 346 =011+ 110 = 101 = 5. En raekke af mgnter gives nu veerdien, der er summen af numrene
pa de viste kroner. Mgnsteret PPKKPKPP far saledes summen 2+3+5=010+0114101=100=4.
Hvis nu publikum velger at pege pa mgnt nr 3, sa skal vi vende en mgnt, sa summen bliver 3
i stedet for 4. Vi skal altsa lgse ligningen 4 + x = 3. Men da alle elementer i gruppen er deres
egen inverse, er © = 3+ 4 = 011 + 100 = 111 = 7. Vi skal derfor vende den sidste mgnt, sa vi far
PPKKPKPK med summen 24-3+5+7=0104+0114+101+111=011=3.

Dette trick virker for enhver potens af 2, men med andre antal mgnter kan kunsten ikke udfgres.
Prgv selv at lave tryllekunsten med 3 mgnter!

En sum

I Amer. Math. Monthly April 2008 stilles som problem 11356 en opgave af Michael Poghosyan,

Yerevan State University, Yerevan, Armenien.
Vis identiteten

S 2" (n))

Z (2k —|— 1 ) (Qn) (2n+1)!

k:0

Bevis:
Vi definerer den nedstigende faktoriel med angivet skridtleengde saledes

(n—l
[[(z—jd) neN
§j=0
[x,d]n:: 1 n:o
o
— N, — d,2d,---,—nd
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Vi omskriver de fleste binomialkoefficienter 1 summen til faktorieller

" /n\  nl(2k)!(2n — 2k)!
Z (k) El(n —k)!(2n)!(2k + 1)

k=0

Faktoriellerne med et 2—tal deles i faktorieller af hvert andet led og skridtleengde 2

"\ ! 2k, 2], [2k — 1,2, [2n — 2k, 2], [2n— 2k —1,2] _,
> (i)

o\ k Kl(n— k) [2n,2] [2n —1,2] (2k+1)

Nu halveres alle faktorerne, sa skridtleengden bliver 1, med korrektioner af diverse potenser af 2

i (n> nlk!128 [k — 5,1, 28(n — k)12" % [n—k — 5,1] _ 2"k
= \k kl(n —E)ni2n [n— 5,1] 27(2k +1)

Efter at have forkortet, hvad som kan, fas

() e e e )

For at komme nsevneren til livs indfgres faktoriellen

1
ot 5=+l =+, (k+3) k-5,
hvorved fas
1 [n+a1], [R50,

Sa kan vi skrive

n

T A 2 () B Bl Bt b bl e 1),

Nu skifter vi fortegn i alle faktorerne i de faktorieller, der indeholder et k i starten
1
[n — %, 1]n [n+ % 1}n

S () FB I 0 3] 0 o 1], T3, 0

k=0

hvilket skrives psenere som

—)" ~ (n 111271 1 k
[n_%,l(} [)72+%’1] Z(k’) [_i’l}k[_?l}n#@ [n—'_i?l}n,k <_1)

n k=0

Dette udtryk genkendes som Pfaff-Saalschiitz’” formel, (9.1), i min nylige leerebog, Summa Sum-
marum, A K Peters 2007:
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Theorem 9.1. If the — complex — numbers satisfy a1 + as + by + by = n — 1 we have the Pfaff-
Saalschiitz formula (J. F. Pfaff 1797, L. Saalschutz 1890)

> (Z) la1, 1], lag, 1 [b1, 1], [b2, 1],,_, (=1)* = [b1 + a1, 1],, [by + a2, 1], (=1)"
k=0

Sa vi kan reducere til

2

n—35.1], [n+31], " 7" [n-5.1], [n+ 31,
22112 24np14 24”(n!)4

C[2n—1,2] [2n+1,2], - 2n —1,2], [2n, Q]i 2n+1,2], (2n)!(2n+1)!

Sokker, der passer til hinanden

Nar sandsynligheden for at fa to rgde sokker er %, nar man traekker to tilfeeldigt ud af en saek

med rgde og sorte sokker, hvor mange er der sa af hver farve i seekken?

Det samlede antal sokker betegnes med m, og antallet af rode sokker med n. Sa kan man udtage
et par sokker pa m(m — 1)/2 mader, og et par rgde sokker pa n(n — 1)/2 mader.

Sandsynligheden for, at et tilfeeldigt udtaget par sokker er rgde, er altsa n(n —1)/m(m — 1), og
denne sandsynlighed er %, hvis og kun hvis

m(m—1)=2n(n—-1). (1)

Et talpar (m,n), som er lgsning til (1), giver en lgsning til sokkeproblemet, hvis m og n er hele
tal > 2. Ligningen (1) kan omformes til

(2m—-1)>=2(2n—-1)*> -1,
og det ses let, at hvis (z,y) er en heltallig lgsning til
z? —2y* = —1, (2)

sa er x og y begge ulige, saledes at m = (x +1)/2 og n = (y + 1)/2 er hele. For at finde samtlige
lgsninger til sokkeproblemet, skal vi altsa finde samtlige heltallige lgsninger til (2) med = > 3 og
y=>3.

For reelle tal z i ringen Z [\/ﬂ af tal af formen z = x+yv/2 med z,y € Z indfgrer vi betegnelsen
zZ=x— y\/§ .

Vi bemeaerker, at der for z,w € Z [\/ﬂ gelder Zw = Zw, samt at (z,y) er lgsning til (2), hvis
og kun hvis z = 2 + y+/2 er lgsning til

2z =—1. (3)

Idet vi szetter e = 1 + 1v/2, ser vi, at ee = —1, hvoraf fglger, at z er lgsning til (3), hvis og kun

2

hvis e“z er det.
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Hermed har vi uendeligt mange lgsninger til (3), nemlig
e =2k k=0,1,2,.... (4)
Her giver zy = e = 1 + 11/2 ikke nogen lgsning til sokkeproblemet, men alle z; med k > 1 gor,

og specielt har vi z; = 7 + 5v/2, der giver (my,n1) = (4,3).
Ved brug af binomialformlen i (4), far vi

der for k > 1 giver lgsningen

k—1 k—1
% + 1\ .4 % + 1\ . i,

= 2r=J 1 = 2r=J kE+1
o jz=:0(2j+1) R ( ) R

til sokkeproblemet.
Da 2z, = €221 = (3 + 2v/2)z,_1, kan folgen {(zx, yr)} o, 0gsd bestemmes rekursivt ved

z1 =1, y1=>5,

Tp =3Tr—1+ 4yYr_1, Y = 2T—1 + 3Yp—1 for k > 2.
Ved indsattelse af xp = 2my — 1, yr = 2ng — 1 heri fas rekursionligningerne

my =4, ny =3,

mr =3mg_1+4nk_1—3, np=2mg_1+3Ink_1—2 for k > 2

til bestemmelse af lgsninger til sokkeproblemet.

Jeg vil slutte med at bevise, at dette er samtlige lgsninger. Dertil vil jeg vise, at talssettene
{(zk, yr) } ey er samtlige positive heltalslgsninger til (2). Lad nemlig (z,y) veere en vilkarlig positiv
heltalslpsning til (2), seet 2z = x 4+ yv/2, og bemeerk, at z > e.

Lad k£ > 0 veere bestemt saledes, at

og saet 2/ = ze 2k,

Da 2’ kan skrives 2/ = ze?* , er 2/ € Z [\/ﬂ , lad os sige 2/ =2/ + y'V2.

Da 2'2/ =2z =—1o0g 2 >1,er|2| = |2/ —y'v/2| < 1, hvilket kun kan veere opfyldt, hvis 2’ og
y’ har samme fortegn, dvs hvis 2’ og 3’ begge er positive.

Da 2/ = 2y> — 1, er 2/ = y' = 1 en mulighed, medens y’ = 2,3 eller 4 ikke kan bruges. y’ > 5
giver 2/ > 7, og altsa 2’ = 2’ +y'v/2 > €® i modstrid med (5). Der ma altsa gaelde 2’ = e, og

dermed z = 2'e?F = z .

Travle duellanter

Duellerne i Travlgse er sjeeldent fatale. Hver kombattant mgder op pa et tilfeeldigt tidspunkt
mellem 5 og 6 om morgenen pa den aftalte dag, venter 5 min pa sin modstander, og gar igen, hvis
denne ikke er mgdt op. Ellers slas de to.
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Hvad er sandsynligheden for, at det kommer til kamp?

Lad (z,y) betegne ankomsttidspunkterne for de to duellanter, regnet i timer fra klokken 5. Sa
er sandsynlighedsfordelingen for (z,y) Lebesguemalet pa enhedskvadratet [0, 1] x [0, 1].

Det kommer til kamp, hvis og kun hvis |y — x| < 1/12, dvs hvis og kun hvis (z,y) ikke ligger i
en af trekanterne

1
Ty : — <1 < S —
1 12<x_ og 0<y<z 15

1 1
15 : < 1—— — <1.
2 0<z< 5 og x—|—12<y_

Sandsynligheden for, at de to duellanter mgdes, er altsa
1 /11\* 23
NYE OPGAVER

De lystige kroner

De lystige kroner
Der ligger seks kroner i énkronestykker pa et bord. De tre ligger pa en ret linie. De ligger ikke
helt teet sammen men sa teet at der ikke kan presses en krone til mellem to af dem.
To kroner stgder til to af de tre til samme side og udenpa dem stgder den sidste krone til begge
de to. Nu kunne det se ud til at den sidste krone ligger lige langt fra de to yderste. Det ggr den
selviglgelig hvis den tredie krone ligger lige midt mellem de to andre. Men ggr den det altid?



Den mystiske pyramide

HEgyptens &ldste pyramide, trinpyramiden
ved Sakkara, ligner ikke Cheops’ og de andre.
Som navnet antyder, har den snarere form som
en keempetrappe, mere som Mayaernes pyra-
mider.

Hvis vi begynder fra over, er der én sten i
det gverste lag, fire i det naeste, ni i det tredie,
oSV

Nar vi nu far at vide, at antallet af sten, der
ialt er medgaet til byggeriet, er et kvadrattal,
og at der er medgaet mere end én sten, hvor
mange trin har sa pyramiden?

(Det er vanskeligt at bevise, at der kun er
én lgsning.)

Klassikeren

Et sted ude i tundraen havde man faet rejst

tre kraftveerker, et elektricitetsveerk, et gasvaerk
og et vandvaerk. Nu var det ellers et gde omrade,

der var ialt kun tre huse, der skulle forsynes
med strgm, gas og vand.

Men det var ikke helt problemfrit. Man
skulle jo traekke ledningerne oven pa jorden,
som var for stivfrossen til at grave i, men led-
ningerne talte ikke at krydse hinanden. Og
selv om der kun var de tre veerker og de tre
huse, havde ingenigrerne endnu ikke fundet en
rgrigring, der lgste problemet.

Hvorfor ikke?

Men oppe pa den ringformede asteroide, Torus

I1, var det lykkedes de lokale ingenigrer at lgse
rogrferingsproblemet.
Hvordan?

Aventyret

Der var engang en prins, der skulle vaelge
sig en prinsesse. Han havde valget mellem tre
sgstre, som alle var unge og smukke. Deres far
var en viis gammel konge, og han ville sikre
sig, at hans kommende svigersgn havde omlgb
i hovedet. Sa han sagde til prinsen:

"For du far min velsignelse til at segte en
af mine dgtre, vil jeg saette dit mod og din
intelligens pa en prove.

Du far lov til at stille én af prinsesserne
ét spgrgsmal, som kan besvares med ”ja” el-
ler ”nej”. Den ene vil svare sandfzerdigt, den
anden vil svare falsk, og den tredje, som er
min yndlingsdatter, kan svare sandfeerdigt el-
ler falsk, som hun vil. Hun har alligevel aldrig
rettet sig efter mig.

Ud fra svaret pa dit spgrgsmal skal du veelge
din brud. Men jeg advarer dig: Hvis du veel-
ger min yndlingsdatter, skal du have dit hoved
hugget af!”

Prinsen havde ingen anelse om, hvem der
var kongens yndligsdatter, lige sa lidt som han
anede, hvem der ville tale sandt, og hvem falsk.
Han matte altsa formulere sit spgrgsmal sadan,
at ligegyldigt hvem han spurgte, og ligegyl-
digt, hvad hun svarede, skulle han ud fra svaret
kunne veelge en af de to andre til sin brud.

Naturligvis stillede prinsen et sa snedigt
spgrgsmal, at han med sikkerhed undgik ynd-
lingsprinsessen. Og kongen blev sa imponeret,
at han alligevel gav prinsen yndlingsdatteren,
og de to levede lykkeligt til deres dages ende.

Hvordan mon prinsen formulerede sit spargs-
mal?

En rorende historie

Et vandrgr er 6,4 cm i diameter, og midt
pa rgret er der et T—ror, sa sidergret er 2,7
cm i diameter. Sidergret sidder altsa ngjagtig
vinkelret pa hovedrgret.

Nu lgber vandet i en strgm gennem hoved-
rgret, og en del af vandet lgber ud ad sidergret.
Man har nu tilsat nogle mikadopinde til van-
det, og det er meningen, at de ikke ma lgbe ud
ad sidergret.

Man har derfor spurgt kommuneingenigren,
hvor lange mikadopindene skal vaere, for at de
ikke pa nogen made kan dreje om ad sidergret.
Hvis de prgver, skal de satte sig fast.



Hvad er den kritiske graenseveerdi for mika-
dopindene?

Et biproblem

Betragt en reguleer sekskant, der er gen-
nemskaret i et regelmaessigt trekantet mgnster.
Man teenker sig, at hver side er delt i n lige
store stykker, og derefter er alle de linier, der
erparallelle med siderne, tegnet.

Problemet er at teelle alle forekommende re-
gulaere sekskanter pa figuren.

Vejerboden

I den klassiske opgave er der givet 12 kugler,
hvoraf de 11 er ens. Man skal sa afslgre den
aparte i 3 vejninger. Samtidig skal det afggres,
om den er lettere eller tungere end de andre.

Til hjeelp har man en almindelig skalvaegt
med to skale.

Men til variation af temaet har vi denne
gang 14 kugler, hvoraf de 13 vejer ngjagtig 10
g. Desuden har vi et 10 gramslod.

Vi skal igen afslgre den aparte kugle i hgjst 3
vejninger, men det er ikke kraevet, at vi finder
ud af, om den er lettere eller tungere end de
andre.

Hvordan skal man beere sig ad med det?

Gitterpunkterne

Forleden dag sad jeg og slog krusseduller pa
et almindeligt ark ternet papir. Sa kom jeg for
skade at lege med gitterpunkterne. Jeg valgte
5 af dem tilfaeldigt ud.

Sa tegnede jeg alle 10 forbindelseslinier mel-
lem dem. Og hver gang var der et af liniestyk-
kerne, der passerede hen over et gitterpunkt.

Hvorfor det?

Pythagoras

En Pythagoreeisk trekant med heltallige si-
der, x, y og z, der opfylder

$2+y2222

ma have mindst én side som et lige tal. Og in-
gen Pythagoreeisk trekant har en side af leengde

2. Men man kan teenke sig en Pythagoraeisk
trekant, hvis sider er to primtal og et tal, der
er det dobbelte af et primtal.

Opgaven gar ud pa at bestemme samitlige
Pythagoraiske trekanter af den slags.

De logiske frimserkesamlere

Tre personer — A, B og C — var alle fuld-
steendig logiske. De kunne alle tre gjeblikkelig
drage alle de logiske konsekvenser af alle prae-
misser. Desuden vidste hver af dem, at de to
andre var lige sa logiske som han selv. Man
viste dem syv frimaerker; to rgde, to gule og
tre grgnne. Derpa fik de bind for gjnene, og
et frimaerke blev klistret i panden af dem hver
iseer, mens de resterende frimaerker blev lagt
ned i en skuffe. Da gjenbindene var fjernet,
spurgte man A: ”Kan du nsevne én farve, som
dit frimeerke i hvert fald ikke har?” ”Nej,” sva-
rede A. Sa fik B det samme spgrgsmal, og han
svarede ogsa "nej”.

Er det muligt ud fra disse oplysninger at
regne sig frem til, hvilken farve A’s frimeerke
havde? Eller B’s? Eller C’s?

Joakim von And i Sahara

Joakim von And er som bekendt verdens
rigeste og naerigste and. Da han derfor engang
skulle kgre over Sahara i jeep, matte han jo
spekulere pa, hvor billigt det kunne lade sig
ggre.

Nu var hans jeeps kun i stand til at kgre
en trediedel af vejen pa en fuld tank, men til
gengeeld kunne alle hans jeeps kgre fuldauto-
matisk uden chauffgr, og han havde masser af
dem. Og han kunne let tgmme og fylde tan-
kene midt i grkenen uden at spilde. Men med
fuld tank menes sa meget benzin, som en jeep
pa nogen made kan medbringe.

Problemet er, hvordan slipper Joakim von
And billigst muligt over grkenen, nar hele hans
flade af jeeps star pa den ene side. Hvor mange
jeeps skal han bruge, og hvordan skal han baere
sig ad? (Han kan bare efterlade sine jeeps i
grkenen, de skal ikke returneres.)
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Sam Loyd’s donkey puzzle. Man skal skaere tre rektangler ud og samle stykkerne, sdledes at de 2 jockey’er rider pd de to aesler.
Losningen kan findes her: http:/[www.defectiveyeti.com/mules/mules-solution.jpg



