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Preface

This thesis was prepared at the Department of Mathematics at the Tech-
nical University of Denmark (DTU) in fulfillment of the requirements for
acquiring an M.Sc. in Mathematical Modelling and Computation. This the-
sis is the conclusion of my honors programme at DTU, and the workload is
to be reflected by this. The work was conducted from September 2012 to
January 2013 under supervision of Associate Professor Kim Knudsen from
DTU Mathematics.

The thesis deals with sparsity regularization and total variation regular-
ization for electrical impedance tomography reconstruction, and the use of
prior information to improve solutions. The theory is mainly based on the
articles Jin and Maass [8], Jin et al. [9].

The prerequisites for reading this thesis is familiarity with functional analy-
sis in terms of continuity, boundedness, and Hilbert spaces. A basic knowl-
edge of distribution theory and measure theory is helpful, but not strictly
necessary to understand the material. It is recommended to be familiar
with Sobolev spaces and their role with regard to partial differential equa-
tions (PDE) and weak forms for PDE’s. There is a short description in
Appendix B giving the basic definitions for Sobolev spaces, and Appendix
C lists some convenient results that will be applied throughout the thesis.

Henrik Garde
January, 2013
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Abstract

This thesis deals with the inverse problem that arises from electrical impe-
dance tomography (EIT) reconstruction. Here the mathematical foundation
is laid for solving the forward EIT problem uniquely, along with continuity
and differentiability results for the forward problem.

The inverse EIT problem is investigated in great theoretical detail with re-
spect to regularization techniques, where sparsity and total variation regu-
larization are used to iteratively give approximate solutions to the problem.
The use of multiple datasets and partial data are investigated, along with
their respective effect on the solution. The idea of using prior information
is applied throughout the thesis, in order to improve these approximate so-
lutions, for instance in terms of the gradient used in the iterative algorithm
and the bias that is introduced by the regularization.

Furthermore, I have engineered specific basis functions into the solutions of
sparsity regularization, by using different parameters for each basis function.
This successfully improves the solution to a degree where it is possible to
reconstruct sharp edges and the correct contrast, even for very difficult
inclusions, something that is otherwise unheard of for a problem as ill-posed
and non-linear as EIT. Prior information is also applied in an experiment
to have total variation regularization determine an approximation to the
support of an inclusion, and use this information to improve the solution
from the sparsity regularization.

The iterative methods have been implemented successfully in Python using
FEniCS [31], that is based on the finite element method.
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1

Introduction

Electrical impedance tomography (EIT) is an imaging technique for which
electrodes are placed on the surface of the body, emitting small amounts of
current through the body (see Figure 1.1). The resulting voltage distribu-

Figure 1.1: Electrodes placed on the chest, used for EIT reconstruc-
tion. URL: http://en.wikipedia.org/wiki/Electrical_
impedance_tomography.

tion at the electrodes are then measured and constitutes the data for the
mathematical problem. This allows for estimation of the electrical conduc-
tivity inside the body, which varies for different parts of the body such as
blood, bone, and muscles. The EIT method is especially good at measuring
the lung capacity since air has practically no electrical conductivity and
therefore the expiration and inspiration state of the lung yields very differ-
ent conductivities in the same part of the body [27], which by difference
imaging leads to estimates of the air distribution in the lungs as seen in
Figure 1.2 on the following page.

http://en.wikipedia.org/wiki/Electrical_impedance_tomography
http://en.wikipedia.org/wiki/Electrical_impedance_tomography


2 1. Introduction

Figure 1.2: Air distribution in lungs of a patient, using the device
Pulmovista 500. URL: http://campaigns.draeger.com/
pulmovista500/en/#introduction.

In biological tissue the electrical conductivity varies from 10−4 to 102S/m
(measured in Siemens per metre) [12], the conductivity of a small selection
of tissues can be seen in Table 1.1. The fact that the conductivity spans
several orders of magnitude, with clear distinction between different types of
tissue, hints that it can be used for medical imaging, i.e. that reconstructing
the electrical conductivity in the body can produce images of the insides of
the body. It should be noted that electrical conductivity depends on the
applied frequency, however this is often neglected since the measurements
are performed at a fixed frequency [12].

Tissue Conductivity (S/m)
Wet skin 3 · 10−3

Blood 7 · 10−1

Fat 2 · 10−2

Liver 5 · 10−2

Table 1.1: Conductivities for different types of tissue, at a frequency of 1
kHz [12].

EIT is harmless and the current that is sent through the body is below the
threshold of the patients’ perception. Unlike many other imaging techniques
the actual equipment required to acquire the data is quite cheap. However,
due to the highly non-linearity and ill-posedness of the underlying inverse
problem, EIT does not perform up to par with other well-established imag-
ing techniques such as CT or MRI when it comes to spatial resolution, and
with EIT it is almost impossible to reconstruct any form of sharp edge.

http://campaigns.draeger.com/pulmovista500/en/#introduction
http://campaigns.draeger.com/pulmovista500/en/#introduction


1.1. Deriving the Mathematical Model 3

The strengths of EIT, beyond being a harmless and cheap method, is also
the speed of the measurements and contrast resolution, making EIT a good
candidate for supplementing mammography or MRI in early breast cancer
detection, since the former methods have a high false positive rate.

One may argue that EIT is actually not a tomographic method, as the
word tomography roughly translates to constructing images in slices, which
is actually not the case with EIT, since the current will not be confined to
some hypothetical plane. Due to this fact, EIT is intuitively made for 3D-
scanning, and solving the inverse problem in 2D can mostly be considered
as investigating the mathematical and numerical aspects of the problem,
where a proper 3D solution would probably be better suited for practical
purposes.

1.1 Deriving the Mathematical Model
Now that a small motivation is given for EIT, it is about time to investigate
the underlying mathematical model. It is also worth remembering that
while we want a good spatial resolution for a reconstruction, this may simply
not be possible, so the goal is to get a reasonable spatial resolution and
hopefully be able to get a good reconstruction of the contrast.

As mentioned earlier the practical problem is inherently three-dimensional,
and therefore x ∈ R3 denotes the spatial coordinates in some open bounded
domain Ω ⊂ R3, and t the temporal coordinate. In order to model the
behaviour of EIT it seems appropriate to start with Maxwell’s equations,
which are a set of coupled PDE’s that can model the propagation of electro-
magnetic fields. These equations consists of Faraday’s law, Ampère’s law
(with Maxwell’s correction term), Gauss’ law of magnetism, and Gauss’
law,

∇× E = −∂tB, (Faraday’s law) (1.1)
∇×H = J + ∂tD, (Ampère’s law) (1.2)
∇ ·B = 0, (Gauss’ law of magnetism) (1.3)
∇ ·D = ρ. (Gauss’ law) (1.4)

Here ∂t denotes a partial derivative in t. E(x, t) is the electric field intensity,
B(x, t) is the magnetic flux density, D(x, t) is the electric displacement field,
H(x, t) is the magnetic field intensity, J(x, t) is the free current density, and
ρ(x, t) is the free electric charge density [27].



4 1. Introduction

In EIT the current density takes a special form, namely, J(x, t) = J(x)eiωt

for some temporal angular frequency ω, which in turn yields that all the
entities in (1.1) through (1.4) are on the form F (x, t) = F (x)eiωt [27].
Inserting this into (1.1) and (1.2) yields

∇× E(x)eiωt = −∂t(B(x)eiωt) = −iωB(x)eiωt,

thus
∇× E(x) = −iωB(x), (1.5)

and similarly
∇×H(x) = J(x) + iωD(x). (1.6)

Seemingly (1.5) and (1.3) and are not coupled with (1.6) and (1.4), however,
this is in fact the case when looking at the electric permittivity ε(x, ω),
magnetic permeability µ(x, ω), and the electrical conductivity σ(x, ω)

D = ε(x, ω)E, (1.7)
B = µ(x, ω)H, (1.8)
J = σ(x, ω)E. (1.9)

Now investigating E and B about µ = 0 via Taylor expansions yields

E(x, ω, µ) = E(x, ω, 0) + ∂µE(x, ω, 0)µ+ 1
2
∂2
µE(x, ω, 0)µ2 + . . . ,

= E0 + µE1 + µ2E2 + . . .

B(x, ω, µ) = B0 + µB1 + µ2B2 + . . .

According to Mueller and Siltanen [27] µ is very small in the human body.
Thus ignoring anything but the leading order term for (1.5) and approxi-
mating B0 = 0 by setting µ = 0 in (1.8) leads to

∇× E0 = 0. (1.10)

Due to (1.10) the electric field is conservative and can therefore be deter-
mined by the gradiant of the electrical potential u [12] by

E0 = −∇u. (1.11)

Since the divergence of a curl is always zero1, inserting (1.7) and (1.9) into
(1.6) and taking the divergence on both sides of the equation, yields

∇ · [(σ + iωε)E] = ∇ · (∇×H) = 0. (1.12)
1from Schaum’s Mathematical Handbook of Formulas and Tables.



1.1. Deriving the Mathematical Model 5

Now only looking at the zeroth order term E0, and inserting (1.11). For
ω = 0 we arrive at

0 = ∇ · (σE0) = −∇ · (σ∇u). (1.13)

(1.13) is the PDE of interest in EIT. The problem can be formulated the-
oretically in 2D which is a beneficial representation for various reasons.
Some being that it is easier and faster to solve PDE’s in lower dimensions,
however, it is also much easier to visualize the solutions. Additionally, one
should be able to solve the problem in 2D before trying in higher dimen-
sions. Therefore in the remainder of this thesis we only consider the domain
Ω ⊂ R2 where Ω is open and bounded with a smooth boundary. Now by
(1.9) the current density that is measured along the boundary is

−J |∂Ω = σ
∂u

∂n
, (1.14)

where n is the outward unit normal on the boundary ∂Ω. Applying Green’s
second identity (Theorem C.2 using ψ = 1, ε = σ and φ = u) and inserting
(1.13),

−
∫
∂Ω

Jds =

∫
∂Ω

σ
∂u

∂n
ds =

∫
Ω

∇ · (σ∇u)dx = 0. (1.15)

Thus the current density is conserved over the boundary, which reduces to
Kirchoff’s law of charge conservation.

Now we can formulate the actual model as

−∇ · (σ∇u) = 0 in Ω, (1.16)

σ
∂u

∂n
= g on ∂Ω, (1.17)

for some g representing the applied current density satisfying
∫
∂Ω
gds = 0.

This model is known as the continuum model, since it assumes that we
have the Neumann-data g available everywhere on the boundary. Another
popular model, is the complete electrode model which more precisely models
the discrete electrodes that are used for measurements. However, this model
will not be considered in this thesis.

In the following thesis it is assumed that real-valued functions are used,
this is partly motivated by the simplifications of the theory while most of
the results will translate directly by using complex functions. However, it is
mostly due to limitations of the software package FEniCS [31] which does
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not support complex-valued functions. It should also be noted that the real
part of any Banach space is still a complete space, thus known theorems
regarding general Banach spaces and Hilbert spaces are of course still valid.

The main topic of the thesis is concerning sparsity regularization for EIT
reconstruction based on Jin and Maass [8], Jin et al. [9], for which it is
assumed that the solution can be expanded in a basis using only few basis
functions. However, the project has evolved due to ideas I have had on how
to apply explicit prior information to the solution, giving the flexibility to
include specific basis functions. Furthermore, at a meeting with Martin S.
Andersen from DTU informatics he mentioned that total variation regular-
ization is often used to find piecewise constant solutions in image analysis,
and I have looked into total variation regularization as an alternative to
sparsity regularization. I also investigate the idea of combining sparsity
regularization and total variation regularization, thus improving the solu-
tion without the use of explicit prior information about the solution.



2

The Forward Problem

The forward EIT problem is stated by (1.16) and (1.17) given the conduc-
tivity σ and the current distribution g, and solving for u, which constitutes
the data u|∂Ω for the inverse problem.

It should be noted that no function spaces have been mentioned yet, but
suppose that σ, u, and g are sufficiently smooth and σ ≥ C > 0 for some
constant C, what sort of solution would one expect from this PDE prob-
lem? Here it should be noted that we only have a Neumann-type bound-
ary condition which is insufficient to ensure a unique solution. Hence, to
ensure uniqueness we can add the constraint

∫
∂Ω
uds = 0, which physi-

cally speaking imposes a grounding of the electrical potential and therefore
makes sense, despite not being part of the original model. How we actually
achieve uniqueness from this constraint is shown in a moment using the
Lax-Milgram theorem.

Now we may consider what spaces g and u should belong to. It may be too
optimistic to directly solve (1.16) and (1.17), and instead we consider the
more general weak formulation of the PDE problem. Therefore instead of
the usual derivatives we make use of the weak derivatives or distribution
derivatives, which means that we should consider Sobolev spaces (see Ap-
pendix B on page 145). Now define the following spaces, where T denotes
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the trace operator from Theorem B.4 and 〈·, ·〉 denotes the dual pairing,

H̃1(Ω) := {v ∈ H1(Ω) |
∫
∂Ω

Tvds = 0},

H̃1/2(∂Ω) := {v ∈ H1/2(∂Ω) |
∫
∂Ω

vds = 0},

H̃−1/2(∂Ω) := {f ∈ H−1/2(∂Ω) | 〈f, 1〉 = 0}.
Here it should be noted that since Ω is bounded then the constant function
1 ∈ H1/2(∂Ω) ⊂ L2(∂Ω), and as the continuous dual of L2(∂Ω) can be
identified with itself, then L2(∂Ω) ⊂ H−1/2(∂Ω). This means that if f ∈
L2(∂Ω) ∩ H̃−1/2(∂Ω) then 0 = 〈f, 1〉 = 〈f, 1〉L2(∂Ω) =

∫
∂Ω
fds. Hence,

utilizing the dual pairing 〈f, 1〉 = 0 we can formalize such a constraint to
any of the distributions in H−1/2(∂Ω).

In order to determine the space for which u should belong, the PDE needs
to be rewritten to its weak form.

Writing up the weak formulation of the PDE problem is mainly a use of
Green’s first and second identity. Assume that the trial function u and the
test function v are sufficiently smooth, multiply (1.16) by v, and integrate
over Ω. Then using Green’s second identity (Theorem C.2), where n denotes
the outwards pointing unit normal, yields

0 = −
∫

Ω

v∇ · (σ∇u)dx = −
∫
∂Ω

σ

(
v
∂u

∂n
− u∂v

∂n

)
ds−

∫
Ω

u∇ · (σ∇v)dx,

and by use of Green’s first identity on the second integral (Theorem C.1
using ∇φ = σ∇v and ψ = u) and inserting the boundary condition (1.17)

0 = −
∫
∂Ω

σv
∂u

∂n
ds+

∫
∂Ω

σu
∂v

∂n
ds−

∫
∂Ω

σu
∂v

∂n
ds+

∫
Ω

σ∇v · ∇udx

=

∫
Ω

σ∇u · ∇vdx−
∫
∂Ω

σ
∂u

∂n
vds

=

∫
Ω

σ∇u · ∇vdx−
∫
∂Ω

gvds. (2.1)

Thus (2.1) gives the weak formulation∫
Ω

σ∇u · ∇vdx =

∫
∂Ω

gvds, u, v ∈ V. (2.2)

Since
∫
∂Ω
uds = 0 and we require first order weak-derivatives, we let V :=

H̃1(Ω). Thus on the right hand-side of (2.2) we have
∫
∂Ω
gTvds. So we
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have Tv ∈ H̃1/2(∂Ω), i.e. a natural space for g could be H̃−1/2(∂Ω). Thus
the right hand-side comprise the dual pairing 〈g, Tv〉.

Now the definition of the forward problem can be collected.

Definition 2.1 (EIT Forward Problem) Let Ω be an open bounded do-
main in Rd (where d is 2 or 3). Let g ∈ H̃−1/2(∂Ω) and let c1 ≤ σ ≤ c2 for
constants c1, c2 > 0, then Fg(σ) denotes the solution to the following PDE
problem and Fg(σ) := TFg(σ) denotes the forward EIT map,

−∇ · (σ∇u) = 0 in Ω, (2.3)

σ
∂u

∂n
= g on ∂Ω. (2.4)

Furthermore, the weak formulation of the PDE problem is∫
Ω

σ∇u · ∇vdx = 〈g, Tv〉, ∀v ∈ H̃1(Ω). (2.5)

It should be noted that if g ∈ Lp(∂Ω)∩ H̃−1/2(∂Ω), p ≥ 2, the right hand-
side of (2.5) remains

∫
∂Ω
gTvds as in (2.2) due to Theorem B.11.

To show that there exists a unique solution to (2.5), we can use the Lax-
Milgram theorem (Theorem C.3), however, the theorem requires that H̃1(Ω)
is a Hilbert space.

Lemma 2.2 H̃1(Ω) is a closed subspace of H1(Ω) and therefore a Hilbert
space, and there is the following norm-equivalence for constants C1, C2 > 0:

C1‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ C2‖v‖H1(Ω), ∀v ∈ H̃1(Ω).

Therefore ‖v‖H̃1(Ω) := ‖∇v‖L2(Ω) defines a norm on H̃1(Ω), and 〈u, v〉H̃1(Ω) :=∫
Ω
∇u · ∇vdx a corresponding inner product.

Proof. Note that for G : H1(Ω)→ R given by Gv :=
∫
∂Ω
Tvds, then

H̃1(Ω) = {v ∈ H1(Ω) | Gv = 0} = ker(G).

As the trace operator T is linear then G is also linear, and clearly using
Theorem B.11 and that T is bounded from H1(Ω) to L2(∂Ω)

|Gv| ≤
∫
∂Ω

|Tv|ds ≤ C‖Tv‖L2(∂Ω) ≤ C‖T‖‖v‖H1(Ω), v ∈ H1(Ω),
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thus G is linear and bounded and therefore continuous, which means that
H̃1(Ω) = ker(G) is a closed subspace of H1(Ω) and therefore also a Hilbert
space.

Now for the norm equivalence it is easy to see that

‖∇v‖2
L2(Ω) ≤ ‖v‖

2
L2(Ω) + ‖∇v‖2

L2(Ω) = ‖v‖2
H1(Ω).

For the other inequality we use the alternative version of Poincaré’s inequal-
ity as shown in Theorem B.6, using that

∫
Tvds = 0 for v ∈ H̃1(Ω):

‖v‖2
H1(Ω) = ‖v‖2

L2(Ω) + ‖∇v‖2
L2(Ω) ≤ (1 + C̃2)‖∇v‖2

L2(Ω).

Hence the equivalence has been shown, and since ‖∇·‖L2(Ω) is a semi-norm
on H1(Ω) then it becomes a norm on H̃1(Ω) due to the equivalence with
‖·‖H1(Ω). It is also not hard to see that 〈∇·,∇·〉L2(Ω) also defines an inner
product on H̃1(Ω), again due to the norm-equivalence. �

It is now possible to show that there is in fact a unique solution to (2.5) in
the space H̃1(Ω).

Theorem 2.3 (Uniqueness for Forward PDE Problem)
With the setup in Definition 2.1, there exists a unique solution u ∈ H̃1(Ω)
to (2.5).

Proof. Let’s identify the forms for the Lax-Milgram theorem (Theorem
C.3), from (2.5) we have

B(u, v) = Lv, ∀v ∈ H̃1(Ω), (2.6)

where

B(u, v) :=

∫
Ω

σ∇u · ∇vdx,

Lv := 〈g, Tv〉.

Now using that c1 ≤ σ ≤ c2 and applying Cauchy-Schwartz’ inequality:

|B(u, v)| ≤ c2|〈u, v〉H̃1(Ω)| ≤ c2‖u‖H̃1(Ω)‖v‖H̃1(Ω),

furthermore
B(u, u) ≥ c1‖u‖2

H̃1(Ω). (2.7)
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Also B is clearly linear in both entries. L is also linear since both g and
T are linear operators and using that g and T are bounded then L is also
bounded via Lemma 2.2:

|Lv| = |〈g, Tv〉| ≤ ‖g‖H−1/2(Ω)‖T‖‖v‖H1(Ω) ≤ c3‖g‖H−1/2(Ω)‖T‖‖v‖H̃1(Ω).
(2.8)

So by the Lax-Milgram theorem (Theorem C.3) there exists a unique u ∈
H̃1(Ω) solving (2.5). �

By use of by (2.6), (2.7), and (2.8) we can determine a stability result for
u with respect to g,

‖u‖2
H̃1(Ω) ≤ c−1

1 |B(u, u)| = c−1
1 |Lu| ≤ c−1

1 c3‖g‖H−1/2(Ω)‖T‖‖u‖H̃1(Ω), (2.9)

thus for C := c−1
1 c3‖T‖ then

‖u‖H̃1(Ω) ≤ C‖g‖H−1/2(Ω). (2.10)

It should be noted that most software packages, including the one I use in
Chapter 4 on page 57, does not directly deal with spaces such as H̃1(Ω),
therefore the following corollary will be useful for implementation.

Corollary 2.4 Let u ∈ H1(Ω) solve the following weak problem

〈σ∇u,∇v〉L2(Ω) = 〈g, Tv〉+ c

∫
∂Ω

Tuds, ∀(c, v) ∈ R×H1(Ω), (2.11)

then u = u∗ with u∗ being the unique solution in Theorem 2.3.

Proof. A case for the test functions is c 6= 0 and v = 0, then (2.11) becomes∫
∂Ω

Tuds = 0,

i.e. the term automatically enforces that u ∈ H̃1(Ω). Now (2.11) must be
satisfied for all v ∈ H1(Ω), and the term

∫
∂Ω
Tuds vanishes as discussed

above, so it reduces to the form (2.5) with u ∈ H̃1(Ω). As H̃1(Ω) ⊂ H1(Ω),
then (2.11) must be satisfied for all v ∈ H̃1(Ω), and from Theorem 2.3 the
only possible solution is u∗.

What remains is to consider v ∈ H1(Ω) \ H̃1(Ω), in that case define

vc := |∂Ω|−1

∫
∂Ω

Tvds,
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where |∂Ω| is the Lebesgue measure of ∂Ω on the boundary. Clearly v−vc ∈
H̃1(Ω) since∫

∂Ω

T (v − vc)ds =

∫
∂Ω

Tvds− |∂Ω|−1

∫
∂Ω

ds

∫
∂Ω

Tvds = 0.

Now v − vc ∈ H̃1(Ω) ensures that (2.5) is satisfied, thus

〈σ∇u∗,∇v〉 − 〈g, Tv〉 = 〈σ∇u∗,∇(v − vc)〉 − 〈g, T (v − vc)〉
+ 〈σ∇u∗,∇vc〉 − 〈g, Tvc〉

= −〈g, Tvc〉,

where the term 〈σ∇u∗,∇vc〉 vanished as vc is constant, i.e. ∇vc = 0. Now
by the linearity of g (note that in this context it is the distribution g), and
that g ∈ H̃−1/2(∂Ω) then

〈σ∇u∗,∇v〉 − 〈g, Tv〉 = −|∂Ω|−1〈g, 1〉
∫
Tvds = 0, ∀v ∈ H1(Ω). (2.12)

Thus u∗ is the only possible solution to (2.11), and u∗ is in fact a solution
when (c, v) ∈ R×H1(Ω). �

As a remark to Corollary 2.4, g may in practice not satisfy 〈g, 1〉 = 0 due to
noise in the measurements. In that case one can find (c1, u) ∈ R ×H1(Ω)
solving

〈σ∇u,∇v〉L2(Ω) = 〈g, Tv〉+c2

∫
∂Ω

Tuds+c1

∫
∂Ω

Tvds, ∀(c2, v) ∈ R×H1(Ω).

(2.13)
Note that adding the term c1

∫
∂Ω
Tvds does not change the fact that

∫
∂Ω
Tuds

enforces that u ∈ H̃1(Ω) due to the case v = 0. Furthermore, for v ∈ H̃1(Ω)
then c1

∫
∂Ω
Tvds vanishes, thus the only possible solution is still u∗. There-

fore c1 becomes −|∂Ω|−1〈g, 1〉 from (2.12), which ideally should be close to
0. One may think of c1 and c2 as Lagrange multipliers for the variational
problem, enforcing the constraints

∫
∂Ω
Tuds =

∫
∂Ω
Tvds = 0.

The data that is recovered from the measurements is assumed to be on the
form

φ := Tu+ ε = Fg(σ) + ε. (2.14)

Since Tu ∈ H̃1/2(∂Ω) ⊂ L2(∂Ω) and ε denotes some perturbation due to
noise in the measurements, it is assumed that φ ∈ L2(∂Ω). It should be
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noted that there are two types of data in play here, φ and g, where it is
assumed that g is known exactly. In order to distinguish between the two
data-types g will often be annotated as Neumann-data due to its role in the
boundary condition in (2.4), while φ may be annotated as the measurement
data or Dirichlet-data.

It should be noted that g 7→ Fg(σ) is linear in g for fixed σ as seen from
(2.5) and bounded via (2.10), however, for fixed g then Fg is a non-linear
mapping, as u depends on σ via (2.4).

Now the hard problem, which is the inverse EIT problem, is to recover a
good approximation to σ from the Dirichlet-data φ and the Neumann-data
g, i.e. we would like to determine σ such that Fg(σ) ' φ, but still close to
the correct conductivity.

A well-posed problem is a problem that has three properties:

(i) There exists a solution.

(ii) The solution is unique.

(iii) The solution depends continuously on the data.

An ill-posed problem is a problem where one or multiple of the three con-
ditions are not satisfied.

Like the forward problem, the inverse problem is highly non-linear and it is
also severely ill-posed, meaning that very small perturbations in the exact
data (such as noise) makes it exceptionally hard to recover σ or anything
that resembles σ [24]. Thus solving the inverse problem will have to be
done by some sort of regularization, for instance by minimizing a Tikhonov
functional [24]. So to be able to construct a decent inversion method we
need to first investigate the forward problem.
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2.1 A Simple Example
Let’s see if we can actually construct a σ and g that allows us to actually
determine Fg(σ). Let Ω be the unit disk in R2, and let (r, θ) denote polar
coordinates, and let r̃ ∈ (0, 1) then we can consider the following concentric
conductivity with C > 0:

σC,r̃(r, θ) :=

{
1 + C, 0 ≤ r < r̃,

1 r̃ ≤ r ≤ 1.
(2.15)

An illustration of such a conductivity is shown in Figure 2.1.

Figure 2.1: σC,r̃ for C = 5 and r̃ = 0.4.

Let gN(θ) := cos(Nθ) be the Neumann-data for some N ∈ N, and assume
that the solution can be separated u(r, θ) = R(r)Θ(θ). Now since eθ ⊥ n
with n being the outward normal and eθ a unit vector in polar direction of
θ, while er ‖ n then (2.4) becomes

R′(1)Θ(θ) = gN(θ) = cos(Nθ),

thus we can assume that Θ(θ) := cos(Nθ) and therefore

R′(1) = 1. (2.16)

Now the requirement
∫
∂Ω
Tuds = 0 is automatically satisfied in the concen-

tric case when
∫
∂Ω
gds = 0 as∫

∂Ω

Tuds = R(1)

∫ 2π

0

Θ(θ)dθ = 0.
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Now consider the PDE-equation (2.3), let R := R1 for r < r̃ and R := R2

for r > r̃, in both cases we have that σC,r̃ is constant and therefore we have

σC,r̃∆u = 0. (2.17)

The Laplacian operator is in polar coordinates determined as [16]

∆u =
1

r
ur + urr +

1

r2
uθθ

=
1

r
R′Θ +R′′Θ +

1

r2
RΘ′′.

Since Θ(θ) = cos(Nθ) then

∆u =

(
1

r
R′ +R′′ − N2

r2
R

)
Θ,

i.e. (2.17) becomes the following, where it is noted that we can choose θ
such that Θ 6= 0:

σC,r̃(r
2R′′ + rR′ −N2R) = 0.

From (2.16) we have R′2(1) = 1, and since we need u and σC,r̃ur to be
continuous at r = r̃ for (2.3), then R2(r̃) = R1(r̃) and R′2(r̃) = (1+C)R′1(r̃).
Furthermore, we do not have a boundary condition at r = 0, thus we can
impose a boundedness condition assuming that u is bounded near r = 0,
|R1(0)| <∞. To summarize we have the following coupled ODE problems:

r2R′′1 + rR′1 −N2R1 = 0, 0 < r < r̃, (2.18)
r2R′′2 + rR′2 −N2R2 = 0, r̃ < r < 1, (2.19)

|R1(0)| <∞, (2.20)
R2(r̃) = R1(r̃), (2.21)
R′2(r̃) = (1 + C)R′1(r̃), (2.22)
R′2(1) = 1. (2.23)

Looking at the ODE in (2.18) and (2.19), then we recognize this as an Euler
equation [16], which has the following solution:

R1(r) = C1r
N + C2r

−N , 0 < r < r̃,

R2(r) = C3r
N + C4r

−N , r̃ < r < 1,

where Ci, i = 1, 2, 3, 4 are constants. From (2.20) we can already deduce
that C2 = 0. From (2.23) we get

1 = N(C3 − C4). (2.24)
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From (2.21) we get

C3r̃
N + C4r̃

−N = C1r̃
N ,

C3 − C1 + C4r̃
−2N = 0. (2.25)

Finally from (2.22) we have

NC3r̃
N−1 −NC4r̃

−N−1 = N(1 + C)C1r̃
N−1,

(1 + C)C1 − C3 + C4r̃
−2N = 0. (2.26)

Thus (2.24), (2.25), and (2.26) is a linear system of three equations with
three unknown:  0 N −N

−1 1 r̃−2N

1 + C −1 r̃−2N

C1

C3

C4

 =

1
0
0

 , (2.27)

solving (2.27) yields C1 = 2
kN

, C3 = C+2
kN

and C4 = −Cr̃2N

kN
, where kN :=

N(Cr̃2N + C + 2).

Thus we have the solution

FgN (σC,r̃)(r, θ) =


2rN

N(Cr̃2N + C + 2)
cos(Nθ), 0 < r < r̃,

(C + 2)rN − Cr̃2Nr−N

N(Cr̃2N + C + 2)
cos(Nθ), r̃ < r < 1.

(2.28)

In Figure 2.2 on the next page an example of (2.28) can be seen, where
it is evident that even though the conductivity σC,r̃ is not continuous, the
function FgN (σC,r̃) is.

It is easy to see that we could substitute cos by sin in (2.28) if we used
gN(θ) = sin(Nθ).

It was shown in the Theorem 2.3 that solving the PDE by Fg(σ) we get a
unique solution in H̃1(Ω), however, when considering Fg(σ) = TFg(σ) can
we be sure that σ1 6= σ2 does not lead to the same data for the inverse
problem? This is an important question when we want to determine the
inverse problem, i.e. is the inverse problem well-defined. Of course this
boils down to the question of whether Fg is injective, so let’s consider the
trace of (2.28), i.e. for r → 1, then

FgN (σC,r̃)(θ) =
C + 2− Cr̃2N

N(Cr̃2N + C + 2)
cos(Nθ). (2.29)
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Figure 2.2: FgN (σC,r̃) for C = 5, r̃ = 0.5, and N = 5.

So reducing this to a case of only investigating conductivities of the form
(2.15), can we determine σC1,r̃1 6= σC2,r̃2 such that FgN (σC1,r̃1) = FgN (σC2,r̃2)?
Since the cosine-term in (2.29) remains unchanged, let’s look at the constant
in front of 1/N cos(Nθ):

C + 2− Cr̃2N

Cr̃2N + C + 2
=
C + 2 + Cr̃2N − 2Cr̃2N

Cr̃2N + C + 2

= 1− 2Cr̃2N

Cr̃2N + C + 2

= 1− 2

(1 + 2C−1)r̃−2N + 1
,

thus the only dependence of C an r̃ in (2.29) is found in (1 + 2C−1)r̃−2N ,
so let hN := (1 + 2C−1

1 )r̃−2N
1 be fixed and let

hN = (1 + 2C−1
2 )r̃−2N

2 ⇒ C2 =
2

hN r̃2N
2 − 1

. (2.30)

Thus if hN r̃2N
2 − 1 6= 0, then (2.30) gives an example where Fg is not

injective, and note that

hN r̃
2N
2 − 1 = (1 + 2C−1

1 )( r̃2
r̃1

)2N − 1,

thus for C1 > 0 and r̃2 > r̃1 then hN r̃2N
2 − 1 > 0. Hence, for fixed (C1, r̃1)

with C1 > 0 then there is an infinity of pairs (C2, r̃2) such that FgN (σC1,r̃1) =
FgN (σC2,r̃2). The dependency in (2.30) is illustrated in Figure 2.3 on the
following page. Figure 2.6 on page 21 shows three cases with different
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r̃2

10-4

10-3

10-2

10-1

100

101

C
2

Figure 2.3: Plot of (2.30) given hN := (1 + 2C−1
1 )r̃−2N

1 , with C1 := 10,
r̃1 := 0.2, and N := 3.

concentric conductivities, that all yields the same forward boundary data
Fg(σC,r̃), and the forward solution on the whole domain Ω is also shown.

In Figure 2.4 on the facing page the boundary data in the cases from Fig-
ure 2.6 on page 21 are shown, and it is seen that the boundary data are
identical up to some error of magnitude 10−11 which is due to rounding
errors. From Figure 2.6 it looks like the solutions Fg(σC,r̃) in the three
cases are identical everywhere, and not only on the boundary, however that
is actually not the case as can be seen in Figure 2.5 on page 20, where
the differences are significantly higher than the 10−11 from the boundary in
Figure 2.4b.

So it seems that with a single Neumann-data g, then Fg is not necessarily
injective which furthermore shows the ill-posedness of the inverse problem.
However, what if we have gN1 and gN2 simultaneously for N1 6= N2? Assume
that we have (C1, r̃1) and (C2, r̃2) such that FgN1

(σC1,r̃1) = FgN1
(σC2,r̃2) and

FgN2
(σC1,r̃1) = FgN2

(σC2,r̃2), then

(1 + 2C−1
1 )r̃−2N1

1 = (1 + 2C−1
2 )r̃−2N1

2 (2.31)
1 + 2C−1

2 = (1 + 2C−1
1 )( r̃1

r̃2
)−2N1 . (2.32)
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0 1 2 3 4 5 6
θ

−0.4
−0.3
−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

case 1 case 2 case 3

(a) Forward boundary data.

0 1 2 3 4 5 6
θ

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.01e−11

case 1 minus case 2
case 1 minus case 3
case 2 minus case 3

(b) Differences in the three cases.

Figure 2.4: Forward boundary data Fg(σC,r̃) from the three cases in Fig-
ure 2.6 on page 21.

By substituting (2.32) into the following we get

(1 + 2C−1
1 )r̃−2N2

1 = (1 + 2C−1
2 )r̃−2N2

2

(1 + 2C−1
1 )( r̃1

r̃2
)−2N2 = (1 + 2C−1

1 )( r̃1
r̃2

)−2N1 ,

as N1 6= N2 then the above equation implies that r̃1 = r̃2, which by (2.31)
implies that C1 = C2. So by having multiple Neumann-data, the forward
problem became injective (at least with respect to concentric conductivi-
ties). The injectivity of the forward operator is an active research subject
and is for instance briefly discussed in Kress [10]. In this thesis I will not
go further into that subject other than using the assumption that with suf-
ficiently many datasets we should be able to recover a good approximation
to the sought conductivity σ. However, when examining the numerical ex-
periments in Chapter 4 on page 57, we find again the phenomenon that an
inclusion (i.e. the change from for instance a constant background conduc-
tivity) with large support and small amplitude will be mapped by Fg to
similar data as an inclusion with small support and high amplitude. This
will serve as a great insight into the behaviour of a regularized solution to
the inverse problem.
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(a) Fg(σC1,r̃1)− Fg(σC2,r̃2). (b) Fg(σC1,r̃1)− Fg(σC3,r̃3).

(c) Fg(σC2,r̃2)− Fg(σC3,r̃3).

Figure 2.5: Differences in the forward data Fg(σC,r̃) in the three cases in
Figure 2.6 on the facing page.
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(a) σC1,r̃1 − 1 with r̃1 = 0.2. (b) Corresponding Fg(σC1,r̃1).

(c) σC2,r̃2 − 1 with r̃2 = 0.5. (d) Corresponding Fg(σC2,r̃2).

(e) σC3,r̃3 − 1 with r̃3 = 0.8. (f) Corresponding Fg(σC3,r̃3).

Figure 2.6: Concentric inclusion that via (2.30) for N := 3 yields the same
Fg(σC,r̃). 1 has been subtracted in the plots for the inclusions,
such the value of C can be seen from the color bar.
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2.2 Continuity and Differentiability of the
Forward Map

Typically inverse problems are solved iteratively and often by using some
sort of regularization to account for the ill-posedness of the problem. Such
iterative schemes often make use of the forward problem since it is usually a
far more well-posed problem and easily solved numerically. For this reason
it is always a good idea to investigate the regularity of the forward problem
with respect to continuity and differentiability, in order to apply the forward
map in a gradient type iterative method.

Most of the theorems in this section will be concerning Fg, however, there
will be remarks considering similar results easily derived for Fg mainly due
to the linearity and boundedness of the trace operator.

Firstly we define a special set for which we seek to find σ, where we assume
that there is a known background conductivity σ0 and what we in reality
seek is an unknown inclusion in the interior of Ω.

Definition 2.5 (Admissible Set) The admissible set A is for some λ ∈
(0, 1) and some known background conductivity σ0 ∈ H1(Ω) given by

A := {σ ∈ H1(Ω) | λ ≤ σ ≤ λ−1 a.e. in Ω, Tσ = Tσ0}

To deal with variations in A define

A0 := A− σ0 = {δσ ∈ H1
0 (Ω) | σ = σ0 + δσ ∈ A}

Definition 2.5 ensures that the conductivities in question are so called in-
clusions, which means that changes from the known background σ0 will
have to occur in the interior of Ω. In Jin et al. [9] they used L∞ instead
of H1 in the definition of A, however, they later return to A ∩H1 and the
boundedness is already applied with λ ≤ σ ≤ λ−1. So using H1 there are
no issues with the statement Tσ = Tσ0, while for L∞ the boundary is not
well-defined as it is a set of measure zero. Therefore Jin and Maass [8], Jin
et al. [9] had to resort to a slightly more convoluted definition, that is a bit
more general. In the current thesis we refrain from elaborating further on
this given that the authors returned to using A ∩H1 later on.

Corollary 2.6 A, and therefore also A0, is convex and closed in H1(Ω).

Proof. The properties will be shown in two separate steps.
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A is closed: Let {xk} ⊆ A such that limk→∞‖xk − x‖H1(Ω) = 0 for some
x ∈ H1(Ω). What remains is to show that x ∈ A. Firstly it must be shown
that Tx = Tσ0, for which it is applied that T is linear and bounded, and
Txk = Tσ0, ∀k,

‖Tx− Tσ0‖L2(∂Ω) = ‖Tx− Txk‖L2(∂Ω)

≤ ‖T‖‖x− xk‖H1(Ω) → 0 for k →∞,

i.e. we indeed have Tx = Tσ0. Now since H1(Ω) ↪→ L2(Ω) (see Def-
inition B.8 on page 148 for the notation on imbeddings) then xk → x in
L2(Ω), which by Theorem C.6 implies that there exists a subsequence {xkj}
which converges pointwise to x. Since λ ≤ xkj ≤ λ−1, a.e. ∀kj then it fol-
lows from the pointwise convergence that λ ≤ x ≤ λ−1, a.e.. Thus x ∈ A
and A is therefore closed in H1(Ω).

A is convex: Let x, y ∈ A and let t ∈ [0, 1], what needs to be shown is
that z := (1− t)x+ ty ∈ A. Due to H1(Ω) being a vector space then clearly
z ∈ H1(Ω). Also as T is linear and Tx = Ty = Tσ0 then

Tz = (1− t)Tx+ tTy = (1− t)Tσ0 + tTσ0 = Tσ0.

Finally, as t ∈ [0, 1] then t, 1− t ≥ 0, thus we have

z = (1− t)x+ ty ≤ (1− t)λ−1 + tλ−1 = λ−1 a.e.,

z = (1− t)x+ ty ≥ (1− t)λ+ tλ = λ a.e.,

i.e. λ ≤ z ≤ λ−1, a.e. so z ∈ A. �

The following theorem is stated in several different version in Jin and Maass
[8], Jin et al. [9], but I apply the one below given in theorem 3.1 in Jin
and Maass [8], which again is collected by results in Gallouet and Monier
[6], Meyers [11]. The admissible set A and λ are defined in Definition 2.5.

Theorem 2.7 (Meyers’ Gradient Estimate) Let Ω ⊂ Rd for d = 2 or
d = 3, where Ω is open and bounded and has smooth boundary. For any
σ ∈ A there exists a constant Q depending only on d and λ, such that
limλ→1Q = ∞ and limλ→0Q = 2. For any q ∈ (2, Q), any s ∈ [q − q

d
,∞],

for g ∈ Ls(∂Ω) ∩ H̃−1/2(∂Ω) and for f ∈ (Lq(Ω))d, then the solution u to

−∇ · (σ∇u) = ∇ · f in Ω, σ
∂u

∂n
= g on ∂Ω,
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satisfies the following estimate with C only depending on d, λ,Ω, and q:

‖u‖W 1,q(Ω) ≤ C(‖g‖Ls(∂Ω) + ‖f‖Lq(Ω)).

For the remainder of this section Q will be the constant from Theorem 2.7.
Furthermore, g will be fixed and g ∈ Ls(∂Ω)∩ H̃−1/2(∂Ω) for s ∈ (q− q

d
,∞]

where 1
q

+ 1
p

= 1
2
and p is chosen in the following theorems. The results

also include the case for p = ∞, in which case q = 2, which is not part of
Theorem 2.7. However, if f = 0 in Theorem 2.7 then we can let s ≥ 2, and
as in (2.9) we have the following where Cauchy-Schwartz’ inequality and
Lemma 2.2 are applied

λ‖u‖2
H̃1(Ω) ≤ |Lu| = |〈g, Tu〉L2(∂Ω)| ≤ ‖g‖L2(∂Ω)‖Tu‖L2(∂Ω)

≤ ‖g‖L2(∂Ω)‖T‖‖u‖H1(Ω) ≤ C1‖T‖‖u‖H̃1(Ω)‖g‖L2(∂Ω).

So by Theorem B.11 then

‖u‖H̃1(Ω) ≤ λ−1C1‖T‖C2‖g‖Ls(Ω).

The following theorem shows that Fg is Lipschitz continuous from certain
Lp(Ω)-spaces to H̃1(Ω). Note that A ⊂ L∞(Ω) thus by Theorem B.11 then
A ⊂ Lp(Ω), p ∈ [1,∞].

Theorem 2.8 Let σ, σ + η ∈ A and p ∈ ( 2Q
Q−2

,∞] then there exists a
constant C > 0 such that

‖Fg(σ + η)− Fg(σ)‖H̃1(Ω) ≤ C‖η‖Lp(Ω).

Proof. Writing up the weak formulations of Fg(σ) and Fg(σ + η) we get
from (2.5):∫

Ω

σ∇Fg(σ)·∇vdx =

∫
∂Ω

gTvds =

∫
Ω

(σ+η)∇Fg(σ+η)·∇vdx, ∀v ∈ H̃1(Ω),

thus∫
Ω

σ∇(Fg(σ)− Fg(σ + η)) · ∇vdx =

∫
Ω

η∇Fg(σ + η) · ∇vdx, ∀v ∈ H̃1(Ω).

(2.33)
Now let v := Fg(σ)− Fg(σ + η) then (2.33) becomes∫

Ω

σ|∇(Fg(σ)−Fg(σ+ η))|2dx =

∫
Ω

η∇Fg(σ+ η) ·∇(Fg(σ)−Fg(σ+ η))dx.

(2.34)
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Now by use the generalized Hölder’s inequality (Theorem B.10) with q cho-
sen such that 1

p
+ 1

q
= 1

2
, then from (2.34) we get∫

Ω

σ|∇(Fg(σ)− Fg(σ + η))|2dx

≤ ‖η‖Lp(Ω)‖∇Fg(σ + η)‖Lq(Ω)‖∇(Fg(σ)− Fg(σ + η))‖L2(Ω). (2.35)

Due to 1
p

+ 1
q

= 1
2
and p ∈ ( 2Q

Q−2
,∞] then q ∈ [2, Q), and since σ, σ + η ∈ A

then η ∈ L∞(Ω) so η ∈ Lp(Ω) by Theorem B.11.

Now using Theorem 2.7 we have

‖∇Fg(σ + η)‖Lq(Ω) ≤ ‖Fg(σ + η)‖W 1,q(Ω) ≤ C1‖g‖Ls(Ω). (2.36)

By (2.35) and (2.36) then

λ‖∇(Fg(σ)− Fg(σ + η))‖2
L2(Ω) ≤

∫
Ω

σ|∇(Fg(σ)− Fg(σ + η))|2dx

≤ C1‖g‖Ls(Ω)‖∇(Fg(σ)− Fg(σ + η))‖L2(Ω)‖η‖Lp(Ω), (2.37)

thus by (2.37) and by setting C := λ−1C1‖g‖Ls(Ω) then

‖Fg(σ)− Fg(σ + η)‖H̃1(Ω) = ‖∇(Fg(σ)− Fg(σ + η))‖L2(Ω) ≤ C‖η‖Lp(Ω).

�

Note that by the linearity and boundedness of T and by Lemma 2.2 then
it follows trivially from Theorem 2.8 that

‖Fg(σ + η)−Fg(σ)‖L2(∂Ω) ≤ ‖T‖‖Fg(σ + η)− Fg(σ)‖H1(Ω)

≤ ‖T‖C1‖Fg(σ + η)− Fg(σ)‖H̃1(Ω)

≤ ‖T‖C1C‖η‖Lp(Ω),

thus the same type of continuity result holds for Fg.

Now let’s attempt to differentiate Fg. This will be done by a linearisation for
which we consider the governing equations of u1 = Fg(σ) and u2 = Fg(σ+η)
in (2.3) and (2.4) for σ, σ + η ∈ A, and subtract these equations (while
utilizing the constraint η|∂Ω = 0 that arises from σ, σ + η ∈ A):

−∇ · (σ∇(u2 − u1)) = ∇ · (η∇u2), in Ω, (2.38)

σ
∂(u2 − u1)

∂n
= g − g = 0, on ∂Ω. (2.39)



26 2. The Forward Problem

Thus if we set w := u2 − u1 then we get the following system

−∇ · (σ∇w) = ∇ · (η∇u2), in Ω, (2.40)

σ
∂w

∂n
= 0, on ∂Ω. (2.41)

Now we can investigate how w depends on η, where Theorem 2.8 with
p =∞ is applied

‖w‖H̃1(Ω) = ‖u2 − u1‖H̃1(Ω) ≤ C‖η‖L∞(Ω).

So rewriting the right hand-side of (2.40) we get

∇ · (η∇u2) = ∇ · (η∇(u1 + w)) = ∇ · (η∇u1) +∇ · (η∇w),

thus the first term ∇ · (η∇u1) is of order O(|η|) while the second term
∇ · (η∇w) is of order O(|η|2). Assuming η is a small perturbation, we
ignore the higher order term, leading to the right hand-side of (2.40) being
replaced by ∇ · (η∇u1) resulting in the following PDE problem

−∇ · (σ∇w) = ∇ · (η∇Fg(σ)), in Ω, (2.42)

σ
∂w

∂n
= 0, on ∂Ω. (2.43)

It is easy to deduce the weak formulation (2.46) of (2.42) and (2.43) as the
PDE problem is very close to that of Definition 2.1, when g = 0 and the
right hand-side of the PDE is non-zero. So using the weak formulation (2.5)
with g = 0 and adding the right hand-side of (2.42) multiplied with v and
integrated over Ω:∫

Ω

σ∇w · ∇vdx =

∫
Ω

∇ · (η∇Fg(σ))vdx.

Now by use of Theorem C.1 (with ψ = v and ∇φ = η∇Fg(σ)):∫
Ω

σ∇w · ∇vdx = −
∫

Ω

η∇Fg(σ) · ∇vdx+

∫
∂Ω

vη
∂Fg(σ)

∂n
ds.

What remains is to show that
∫
∂Ω
vη ∂Fg(σ)

∂n
ds = 0, however, this is easy as

σ, σ + η ∈ A i.e. σ|∂Ω = σ0|∂Ω and (σ + η)|∂Ω = σ0|∂Ω therefore η|∂Ω = 0
and the term vanishes.
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Definition 2.9 Let σ, σ + η ∈ A then (Fg)
′
ση denotes the linear mapping

of η to w ∈ H̃1(Ω) as the solution of

−∇ · (σ∇w) = ∇ · (η∇Fg(σ)), in Ω, (2.44)

σ
∂w

∂n
= 0, on ∂Ω. (2.45)

The weak formulation of the above is∫
Ω

σ∇(Fg)
′
ση · ∇vdx = −

∫
Ω

η∇Fg(σ) · ∇vdx, ∀v ∈ H̃1(Ω). (2.46)

From (2.46) it is easy to see that (Fg)
′
σ is linear.

Theorem 2.10 With the setup in Definition 2.9, then (Fg)
′
σ is well-defined,

i.e. there is a unique solution to (2.46) in H̃1(Ω).

Proof. Note that the bilinear form for the Lax-Milgram Theorem (Theo-
rem C.3) is identical to that in the proof of Theorem 2.3, thus what remains
is to show that L defined by Lv := −

∫
Ω
η∇Fg(σ) · ∇vdx is a linear and

bounded functional on H̃1(Ω). Since σ, σ + η ∈ A, i.e. λ ≤ σ ≤ λ−1 and
λ ≤ σ + η ≤ λ−1, then we have |η| ≤ λ−1 − λ, so by Cauchy-Schwartz’
inequality:

|Lv| ≤ (λ−1 − λ)|〈Fg(σ), v〉H̃1(Ω)|
≤ (λ−1 − λ)‖Fg(σ)‖H̃1(Ω)‖v‖H̃1(Ω), v ∈ H̃1(Ω).

Thus as Fg(σ) ∈ H̃1(Ω) then L is bounded, and L is clearly also linear, i.e.
by Theorem C.3 there is a unique solution in H̃1(Ω) to (2.46). �

Now we can investigate boundedness of the linearised operator (Fg)
′
σ.

Theorem 2.11 Let σ, σ + η ∈ A and p ∈ ( 2Q
Q−2

,∞] then

‖(Fg)′ση‖H̃1(Ω) ≤ C‖η‖Lp(Ω).

Proof. The proof is very similar to that of Theorem 2.8. From the weak
form (2.46) set v := (Fg)

′
ση:∫

Ω

σ|∇(Fg)
′
ση|2dx = −

∫
Ω

η∇F (σ) · ∇(Fg)
′
σηdx. (2.47)
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Now using Theorem B.10 with q such that 1
q

+ 1
p

= 1
2
, and as in the proof

of Theorem 2.8 this implies that q ∈ [2, Q):∫
Ω

σ|∇(Fg)
′
ση|2dx ≤ ‖η‖Lp(Ω)‖∇F (σ)‖Lq(Ω)‖∇(Fg)

′
ση‖L2(Ω)

≤ ‖η‖Lp(Ω)‖F (σ)‖W 1,q(Ω)‖∇(Fg)
′
ση‖L2(Ω). (2.48)

Using Theorem 2.7 then∫
Ω

σ|∇(Fg)
′
ση|2dx ≤ C1‖g‖Ls(Ω)‖∇(Fg)

′
ση‖L2(Ω)‖η‖Lp(Ω),

thus

λ‖∇(Fg)
′
ση‖2

L2(Ω) ≤
∫

Ω

σ|∇(Fg)
′
ση|2dx ≤ C1‖g‖Ls(Ω)‖∇(Fg)

′
ση‖L2(Ω)‖η‖Lp(Ω).

(2.49)
So by setting C := λ−1C1‖g‖Ls(Ω) then (2.49) becomes

‖(Fg)′ση‖H̃1(Ω) = ‖∇(Fg)
′
ση‖L2(Ω) ≤ C‖η‖Lp(Ω). �

Now we will see that (Fg)
′
σ is sort of a Frechét derivative of Fg at σ when

(Fg)
′
σ is considered as a map from certain Lp(Ω)-spaces (see Definition C.4).

The notion sort of is due to A or rather A− σ is not a space.

Theorem 2.12 Let σ, σ + η ∈ A and p ∈ ( 2Q
Q−2

,∞] then

lim
‖η‖Lp(Ω)→0

‖F (σ + η)− F (σ)− (Fg)
′
ση‖H̃1(Ω)

‖η‖Lp(Ω)

= 0. (2.50)

Proof. Let u1 := Fg(σ+ η), u2 := Fg(σ) and u3 := (Fg)
′
ση, then their weak

formulations are by Definition 2.1 and Definition 2.9 given by∫
Ω

(σ + η)∇u1 · ∇vdx =

∫
∂Ω

gTvds, ∀v ∈ H̃1(Ω),∫
Ω

σ∇u2 · ∇vdx =

∫
∂Ω

gTvds, ∀v ∈ H̃1(Ω),∫
Ω

σ∇u3 · ∇vdx = −
∫

Ω

η∇u2 · ∇vdx, ∀v ∈ H̃1(Ω).
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Now define w ∈ H̃1(Ω) as w := u1 − u2 − u3 and insert the above weak
forms into the following expression:∫

Ω

(σ + η)∇w · ∇vdx =

∫
∂Ω

gTvds−
∫
∂Ω

gTvds−
∫

Ω

η∇u2 · ∇vdx

+

∫
Ω

η∇u2 · ∇vdx−
∫

Ω

η∇u3 · ∇vdx

= −
∫

Ω

η∇(Fg)
′
ση · ∇vdx, ∀v ∈ H̃1(Ω). (2.51)

Now let v := w in (2.51):∫
Ω

(σ + η)|∇w|2dx = −
∫

Ω

η∇(Fg)
′
ση · ∇wdx. (2.52)

As in the proof of the previous two theorems we now apply Theorem B.10
with q such that 1

p
+ 1

q
= 1

2
:∫

Ω

(σ + η)|∇w|2dx ≤ ‖η‖Lp(Ω)‖∇(Fg)
′
ση‖Lq(Ω)‖∇w‖L2(Ω),

thus as in the proofs of the previous theorems

‖w‖H̃1(Ω) = ‖∇w‖L2(Ω) ≤ λ−1‖η‖Lp(Ω)‖∇(Fg)
′
ση‖Lq(Ω)

≤ λ−1‖η‖Lp(Ω)‖(Fg)′ση‖W 1,q(Ω). (2.53)

Notice that the fraction in (2.50) is in fact ‖w‖H̃1(Ω)/‖η‖Lp(Ω), thus what
remains in order to prove (2.50) is to show that ‖(Fg)′ση‖W 1,q(Ω) → 0 when
‖η‖Lp(Ω) → 0.

Showing that ‖(Fg)′ση‖W 1,q(Ω) → 0 when ‖η‖Lp(Ω) → 0:

Note that since 1
p

+ 1
q

= 1
2
and p ∈ ( 2Q

Q−2
,∞] then q ∈ [2, Q). The case q = 2

has already been covered in Theorem 2.11, so let’s assume q ∈ (2, Q). From
Theorem 2.7 then we have

‖(Fg)′ση‖W 1,q(Ω) ≤ C‖η∇Fg(σ)‖Lq(Ω). (2.54)

Now define q̃ := q + ε ∈ (q,Q) for some arbitrarily small ε > 0. Define

p̃ :=
q̃q

q̃ − q ,
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then as q ∈ (2, Q) we have that p̃ = q2

ε
+ q > 4

ε
+ 2 > 2, and we have

1
q̃

+ 1
p̃

= 1
q
, thus by Theorem B.10:

‖η∇Fg(σ)‖Lq(Ω) ≤ ‖η‖Lp̃(Ω)‖∇Fg(σ)‖Lq̃(Ω) ≤ ‖η‖Lp̃(Ω)‖Fg(σ)‖W 1,q̃(Ω).
(2.55)

In order to apply Theorem 2.7 to ‖Fg(σ)‖W 1,q̃(Ω) it is noted that q̃ ∈ (q,Q),
however, we also need to restrain s ∈ [q̃ − q̃

d
,∞] = [q − q

d
+ d−1

d
ε,∞]. Note

that ε can be chosen arbitrarily small. Thus for s ∈ (q − q
d
,∞], we can use

Theorem 2.7 which is exactly how s was chosen in the beginning of this
section. Hence, applying (2.54) and Theorem 2.7 to (2.55):

‖(Fg)′ση‖W 1,q(Ω) ≤ CC1‖g‖Ls(Ω)‖η‖Lp̃(Ω). (2.56)

Now let’s look at the two cases p̃ ≤ p and p̃ > p. If p̃ ≤ p then by Theorem
B.11 we have

p̃ ≤ p⇒ ‖η‖Lp̃(Ω) ≤ C2‖η‖Lp(Ω). (2.57)

In the case of p̃ > p then p̃− p > 0, and σ, σ + η ∈ A entails |η| ≤ λ−1 − λ
so

‖η‖p̃Lp̃(Ω) =

∫
Ω

|η|p̃dx =

∫
Ω

|η|p̃−p|η|pdx ≤ (λ−1 − λ)p̃−p‖η‖pLp(Ω),

thus
p̃ > p⇒ ‖η‖p̃Lp̃(Ω) ≤ C3‖η‖pLp(Ω). (2.58)

By (2.56), (2.57) and (2.58) we get

lim
‖η‖Lp(Ω)→0

‖(Fg)′ση‖W 1,q(Ω) = 0.
�

Now we may consider (Fg)
′
σ in terms of a derivative in the H1-metric, by

imbedding H1 into Lp-spaces. Since H1(Ω) does not continuously embed
into L∞(Ω) for d = 2 (Theorem B.9), then the Lp-estimates derived in the
prior theorems provide more flexibility than the standard result for L∞.

Corollary 2.13 If d = 2 then Fg is differentiable in the H1-metric with
Frechét derivative (Fg)

′
σ with perturbations in A. If d = 3 then the same

holds if λ is sufficiently close to 1.

Proof. The proof will consist of imbedding H1(Ω) into some of the Lp-
spaces used in Theorem 2.12.

For d = 2 then H1(Ω) imbeds continuously into Lp(Ω) for p ∈ [1,∞) by
Theorem B.9 and Theorem B.11.
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For d = 3 then by Theorem B.9 and Theorem B.11 we have that H1(Ω)
continuously imbeds into Lp(Ω) for p ≤ 6. For Theorem 2.7 and Theorem
2.12 we need to have Q(λ) > 2 and 2Q(λ)

Q(λ)−2
< p ≤ 6, thus we need Q(λ) > 3.

By Theorem 2.7 then Q tends to ∞ as λ tends to 1, and therefore we have
H1(Ω) imbedded into Lp(Ω) for p ∈ ( 2Q

Q−2
, 6] when λ is sufficiently close to

1.

Thus in Theorem 2.12 we can approximate ‖η‖Lp(Ω) ≤ C‖η‖H1(Ω), and yield
the desired result. �

Now we can easily find the derivative (Fg)′σ simply by applying that T is
linear and bounded and by applying Lemma 2.2. We have that

‖Fg(σ + η)−Fg(σ)− T (Fg)
′
ση‖L2(∂Ω)

≤ ‖T‖‖Fg(σ + η)− Fg(σ)− (Fg)
′
ση‖H1(Ω)

≤ ‖T‖C1‖Fg(σ + η)− Fg(σ)− (Fg)
′
ση‖H̃1(Ω),

thus by Theorem 2.12 and Corollary 2.13 then (Fg)′σ = T (Fg)
′
σ.

Finally we present the following result, which will play a role in determining
the derivative of the discrepancy term in Chapter 3.

Lemma 2.14 Let σ, σ + η ∈ A, and f ∈ L2(∂Ω), then

〈f, (Fg)′ση〉L2(∂Ω) = −〈∇Fg(σ) · ∇Ff (σ), η〉L2(Ω). (2.59)

Proof. The weak form of Ff (σ) and (Fg)
′
ση are by Definition 2.1 and Def-

inition 2.9 given by∫
Ω

σ∇Ff (σ) · ∇vdx =

∫
∂Ω

fTvds, v ∈ H̃1(Ω), (2.60)∫
Ω

σ∇(Fg)
′
ση · ∇vdx = −

∫
Ω

η∇Fg(σ) · ∇vdx, v ∈ H̃1(Ω). (2.61)

Now let v := (Fg)
′
ση in (2.60) and v := Ff (σ) in (2.61), then as T (Fg)

′
σ =

(Fg)′σ we get∫
∂Ω

f(Fg)′σηds =

∫
Ω

σ∇(Fg)
′
ση · ∇Ff (σ)dx = −

∫
Ω

η∇Fg(σ) · ∇Ff (σ)dx,

as a consequence

〈f, (Fg)′ση〉L2(∂Ω) = −〈∇Fg(σ) · ∇Ff (σ), η〉L2(Ω). �
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As a remark to Lemma 2.14, we can think of (2.59) in terms of an adjoint
operator for (Fg)′σ,

((Fg)′σ)∗f := −∇Fg(σ) · ∇Ff (σ),

and thereby we can formulate

〈f, (Fg)′ση〉L2(∂Ω) = 〈((Fg)′σ)∗f, η〉L2(Ω).



3

Solving the Inverse Problem

Having determined important properties of the forward problem, and in
particular for (Fg)′σ, we continue by investigating the inverse EIT problem.
The conductivity σ is assumed to be on the form σ = σ0 + δσ where σ0 is
a known background conductivity such that Tσ = Tσ0, i.e. Tδσ = 0, and
the inclusion δσ is the unknown that we seek to determine.

We wish to solve for σ from Fg(σ) ' φ given the measured Dirichlet-data
φ and known Neumann-data g. Remember that

φ = Fg(σ) + ε,

where ε is a perturbation in L2(∂Ω). In order to solve this problem we
formulate it as a minimization problem with objective function ΨP , which
attempts to find an inclusion δσ for which the residual φ − Fg(σ0 + δσ) is
small and which also is subject to a penalty term, that introduces a bias to
help the method find a good approximation to the correct conductivity.

Now let’s define the regularization that is going to be applied in pursuit of
determining an approximate solution to the inverse EIT problem. Here it
should be reminded that the set A0 is defined in Definition 2.5, where σ0 is
some fixed background conductivity.

Definition 3.1 Let δσ ∈ A0 and P : A0 → [0,∞), then ΨP is defined as

ΨP (δσ) := J(σ0 + δσ) + P (δσ),

where P is called the penalty term and J is the discrepancy term defined
as

J(σ) :=
1

2
‖Fg(σ)− φ‖2

L2(∂Ω).
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The functional ΨP is the objective function that is sought minimized on A0

in order to determine an approximation to the exact σ = σ0 + δσ.

Note that J corresponds to a least-squares term seeking to minimize the
residual. However, naively minimizing the residual will yield a solution
which is too affected by noise to be recognized as an approximation to the
exact solution. Hence, solving the ill-posed EIT problem requires an alter-
nate approach by including the penalty term. The easiest way to explain
this more explicitly is in terms of linear ill-posed problems, say

Ax = b̃ = b+ ε,

where A is a matrix and b = Ax∗ is the exact data corresponding to an exact
solution x∗, and therefore b̃ is the perturbed data. Clearly minimizing the
residual corresponds to

x = A−1b̃ = A−1b+ A−1ε = x∗ + A−1ε.

We can think of A−1ε as the inverted noise, and if A models an ill-posed
problem then A has a large condition number, meaning that A−1ε can
become very large and dominate the exact solution x∗ even for very small
perturbations ε.

For non-linear problems we can not split the terms into the exact solution
and inverted noise, but the behaviour is similar in the regard that small
perturbations will ruin the solution, unless we help the solver in finding an
appropriate approximation. This is typically done by help of the penalty
term P . Thereby we accept that we will not find the correct solution but
via regularization we hope to find a good candidate for an approximate
solution. Furthermore, due to the perturbation in φ we can actually not be
sure that φ is even in the range of the forward map, which means that there
possibly is no solution to the given data. This is the motivation for using
an optimization approach, such that we attempt to find a solution σ such
that Fg(σ) is close to the Dirichlet-data φ when projected onto the range
of the forward map.

In a typical Tikhonov regularization, one would choose P (δσ) = α‖δσ‖2

where ‖·‖ is an appropriate norm and α will be the regularization parameter.
The role of the regularization parameter is to control the balance between
minimizing the residual and introducing the bias from the penalty term.
It is evident that a good approximation for σ is highly dependent on the
regularization parameter, and for some problems good candidates can be
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found using automated approaches [24]. In this thesis we will not use these
automatic approaches since the prominent methods are based on linear
problems, which EIT is not, and therefore we will determine appropriately
good parameters by trial-and-error. However, in this thesis we deal with toy
problems, i.e. problems where the data is simulated from the exact σ, so it is
not hard to find a good parameter. Choosing the regularization parameter
very low and then increasing it steadily will give a decrease in the error for
the approximation, until some tipping point where the regularization bias
begins to dominate the solution.

3.1 Derivative of the Discrepancy

The first step in minimizing ΨP using a gradient type iterative algorithm,
is to determine a derivative to the discrepancy term. For a definition of the
Gâteaux derivative see Definition C.4 in Appendix C.

Theorem 3.2 Let σ, σ+ η ∈ A then the Gâteaux derivative J ′σ is given by

J ′ση = 〈∇J(σ), η〉L2(Ω), (3.1)

where ∇J(σ) is defined as

∇J(σ) := −∇Fg(σ) · ∇FFg(σ)−φ(σ). (3.2)

Proof. J ′ση is defined by

J ′ση :=
d

dε
J(σ + εη)|ε=0. (3.3)

Thus by use of Corollary 2.13 and Theorem C.5, that (Fg)′σ is linear, and
the product rule for differentiation, then

d

dε
J(σ + εη) =

d

dε

1

2

∫
∂Ω

|Fg(σ + εη)− φ|2ds

=

∫
∂Ω

[
d

dε
(Fg(σ + εη)− φ)

]
(Fg(σ + εη)− φ)ds

=

∫
∂Ω

[
d

dε
(Fg(σ) + ε(Fg)′ση +O(ε2)− φ)

]
(Fg(σ + εη)− φ)ds

=

∫
∂Ω

[(Fg)′ση +O(ε)] (Fg(σ + εη)− φ)ds.
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So by (3.3) and Lemma 2.14 then

J ′ση =
d

dε
J(σ + εη)|ε=0

=

∫
∂Ω

(Fg)′ση(Fg(σ)− φ)ds (3.4)

= 〈∇J(σ), η〉L2(Ω).

It is evident that (3.4) is what we would expect from the usual differentiation
of a composition of functions regardless of how Fg is defined (as long as it
is differentiable), while Lemma 2.14 leads to the less intuitive result that
makes use of the definition of Fg. �

The notation used in (3.1) is consistent with the notation in Neuberger
[28], where ∇J(σ) denotes the function that via the metric (which in this
case is for L2) defines the derivative of the discrepancy term J . To relate
this notation to the usual gradient in Rd, note that the Gâteaux derivative
corresponds to a so called directional derivative, which for Rd corresponds
to f ′ = ∇f · v where ∇f is the usual gradient and v the direction. The
directional derivative denotes the derivative along a curve given by the
direction v. If we let v be normalized such that |v| = 1, then it follows from
the Cauchy-Schwartz inequality that |f ′| ≤ |∇f ||v| = |∇f | no matter the
direction v. If ∇f 6= 0, then this limit is only attained for v = ±∇f/|∇f |,
i.e. ∇f gives the direction for which there is the steepest ascend in f ,
and similarly −∇f denotes the direction for the steepest descend, which
for Rd is a well-known fact. Since the Cauchy-Schwartz inequality can be
applied in the exact same way for 〈∇J(σ), η〉L2(Ω) then −∇J(σ) denotes
the direction for the steepest descend, not in a geometrical sense, but in the
sense of the ‖·‖L2(Ω)-metric. Similarly one can look at different metrics for
which steepest ascend/descend directions will be different.

Here we will attempt to construct an iterative gradient method, similar
to that of a steepest descend method, where we seek to find δσ such that
σ = σ0 + δσ. Therefore it seems convenient to use a smoother function
∇sJ(σ) ∈ H1

0 (Ω) to define J ′σ. It is convenient as ∇J(σ) may be non-zero
on the boundary which is not very good considering that we wish Tδσ = 0
such that Tσ = Tσ0, and this may generate numerical problems when
applying a steepest descend type algorithm like δσi+1 := δσi − si∇J(σi),
where we iterative move in the descend directions using some step size si.
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Now to further justify the use of the H1-metric (on H1
0 ) which leads to

∇sJ(σ) in Corollary 3.5 it is shown that we can always choose A such that
J ′σ ∈ (H1

0 (Ω))′ = H−1(Ω).

Lemma 3.3 Let g ∈ Ls(Ω) where Ω ⊂ Rd is open and bounded and has
C1 boundary. Let p and q be conjugate exponents, then f 7→ 〈f, g〉L2(Ω) ∈
(W 1,p(Ω))′ in either of the following cases:

(i) 1 ≤ p < d and s ≥ qd
q+d

,

(ii) p ≥ d and s > 1.

Proof. First let 1 ≤ p < d and let f ∈ W 1,p(Ω) then f ∈ Lr(Ω) with
r := pd

d−p by Theorem B.9, and r′ := qd
q+d

is the conjugate exponent to r as

1

r
+

1

r′
=
d− p
pd

+
q + d

qd
=
qd+ pd

qpd
=

1

p
+

1

q
= 1.

Thus by Theorem B.11 then g ∈ Lr′(Ω) for s ≥ r′ = qd
q+d

.

The other case is p ≥ d and let f ∈ W 1,p(Ω) then by Theorem B.9 and
Theorem B.11 we have f ∈ Lr(Ω) for any 1 ≤ r < ∞, and let r′ be
the conjugate exponent r′ ∈ (1,∞]. Then s > 1 will be s = r′ for some
r ∈ [1,∞). Thus g ∈ Lr′(Ω) for some corresponding r ∈ [1,∞).

In both cases we have from Hölder’s inequality and the imbeddingW 1,p(Ω) ↪→
Lr(Ω):

|〈f, g〉L2(Ω)| ≤ ‖g‖Lr′ (Ω)‖f‖Lr(Ω) ≤ C‖g‖Lr′ (Ω)‖f‖W 1,p(Ω),

thus f 7→ 〈f, g〉L2(Ω) is a bounded (and clearly linear) functional onW 1,p(Ω),
and therefore contained in (W 1,p(Ω))′. �

Theorem 3.4 Let σ ∈ A and φ be exact Dirichlet-data. If d = 2 then
J ′σ ∈ H−1(Ω). If d = 3 the same holds if λ is sufficiently close to 1 and
g ∈ Ls(∂Ω) ∩ H̃−1/2(∂Ω) for s ≥ 8

5
.

Proof. Fg(σ) ∈ H̃1(Ω) and by Theorem B.4 then Fg(σ) ∈ H̃1/2(∂Ω) ⊂
L2(∂Ω), and as φ ∈ H̃1/2(∂Ω) then w := Fg(σ)− φ ∈ L2(∂Ω)∩ H̃−1/2(∂Ω).
Thus using Theorem 2.7 then

‖Fw(σ)‖W 1,q(Ω) ≤ C‖w‖L2(∂Ω), (3.5)
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where q ∈ (2, Q) and satisfies (1− 1
d
)q ∈ [1, 2] (the reason for this interval is

such that s = 2 in Theorem 2.7 satisfies s ≥ q− q
d
), i.e. q ∈ (2, Q)∩[ d

d−1
, 2d
d−1

].
Thus let’s use

d = 2 : q ∈ (2,min{Q, 4}) ⊆ (2, Q) ∩ [2, 4], (3.6)
d = 3 : q ∈ (2,min{Q, 3}) ⊆ (2, Q) ∩ [3

2
, 3]. (3.7)

Now (3.5), (3.6), and (3.7) will be used show that ∇J(σ) belongs to appro-
priate Lr-spaces, in order to use Lemma 3.3. Note that by Lemma 3.3 then
J ′σ = 〈∇J(σ), ·〉L2(Ω) ∈ (H1(Ω))′ ⊂ (H1

0 (Ω))′ = H−1(Ω) if ∇J(σ) ∈ Lr(Ω)

with r > 1 for d = 2 and with r ≥ 6
5
for d = 3.

First let d = 2, since Fg(σ) ∈ H̃1(Ω) then ∇Fg(σ) ∈ L2(Ω). It has al-
ready been established in (3.5) and (3.6) that Fw(σ) ∈ W 1,q(Ω) for q ∈
(2,min{Q, 4}), so ∇Fw(σ) ∈ Lq(Ω). By Theorem B.10 then

∇J(σ) = −∇Fg(σ) · ∇Fw(σ) ∈ Lr(Ω),
1

r
=

1

2
+

1

q
,

and as q > 2 then r > 1, i.e. J ′σ ∈ H−1(Ω).

Now let d = 3. Since we want ∇J(σ) ∈ L6/5(Ω), it suffices by Hölder’s
inequality to show that ∇Fg(σ),∇Fw(σ) ∈ L12/5(Ω). If

s ≥
(

1− 1

d

)
12

5
=

8

5
,

which is presumed in this theorem, then Theorem 2.7 implies Fg(σ) ∈
W 1,12/5(Ω) i.e. ∇Fg(σ) ∈ L12/5(Ω). ∇Fw(σ) ∈ L12/5(Ω) if Q > 12

5
by

(3.5) and (3.7), which is satisfied for λ in A being sufficiently close to 1, as
limλ→1Q(λ) =∞ in Theorem 2.7. So for λ sufficiently close to 1 and s ≥ 8

5

then J ′σ ∈ H−1(Ω). �

Now we may use a so called Sobolev gradient ∇sJ(σ) as it is named in
Neuberger [28], which will act as a preconditioner for the usual ∇J(σ) in
the steepest descent type algorithm by avoiding numerical errors on the
boundary.

Corollary 3.5 (Sobolev Gradient) The following PDE problem has a
unique solution in H1

0 (Ω), and this solution will be denoted ∇sJ(σ),

−∆u+ u = ∇J(σ), in Ω, u = 0, on ∂Ω. (3.8)
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Then ∇sJ(σ) = ι∗∇J(σ) with ι being the inclusion operator of H1
0 (Ω) into

L2(Ω) (bounded in the H1-metric), and thus

J ′ση = 〈∇J(σ), ιη〉L2(Ω) = 〈∇sJ(σ), η〉H1(Ω), η ∈ H1
0 (Ω). (3.9)

Proof. The proof follows directly by writing up the weak formulation of
(3.8) and applying Riesz’ representation theorem [19]. Let η ∈ H1

0 (Ω)
multiply both sides of (3.8) and integrate over Ω, then by Theorem C.1

〈∇J(σ), η〉L2(Ω) = −
∫

Ω

∆uηdx+

∫
Ω

uηdx

=

∫
Ω

∇u · ∇ηdx−
∫
∂Ω

Tη
∂u

∂n
ds+

∫
Ω

uηdx

= 〈u, η〉H1(Ω) −
∫
∂Ω

Tη
∂u

∂n
ds,

= 〈u, η〉H1(Ω), (3.10)

where
∫
∂Ω
Tη ∂u

∂n
ds vanishes because Tη = 0. As J ′σ ∈ (H1

0 (Ω))′ then the
expression (3.10) makes sense.

Since J ′ση = 〈∇J(σ), η〉L2(Ω) = 〈∇J(σ), ιη〉L2(Ω) where the embedding ι :

H1
0 (Ω) → L2(Ω) is a bounded linear operator, then it follows from Riesz’

representation theorem [19] that there is a unique adjoint ι∗ : L2(Ω) →
H1

0 (Ω) which is a linear bounded operator satisfying

〈∇J(σ), ιη〉L2(Ω) = 〈ι∗∇J(σ), η〉H1(Ω),

where the unique element ι∗∇J(σ) ∈ H1
0 (Ω) is denoted ∇sJ(σ). Due to

uniqueness ∇sJ(σ) must be the solution in (3.10). �

For the iteration step we need to determine a step size si, for an algorithm
resembling δσi+1 = δσi − si∇sJ(σi). Here we will make use of the popular
Barzilai-Borwein (BB) step size rule [1, 9, 13], for which we try to find si
such that 1

si
(δσi − δσi−1) = 1

si
(σi − σi−1) ' ∇sJ(σi) − ∇sJ(σi−1). It may

not be possible to get equality so it is found in the least-squares sense

si := argmin
s

ζ(s) = ‖s−1(δσi − δσi−1)− (∇sJ(σi)−∇sJ(σi−1))‖2
H1(Ω).

(3.11)
Step sizes of the form (3.11) has proven to give fast convergence in gradient
methods [1].
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Corollary 3.6 (BB Step Size)
The solution to (3.11) if 〈δσi − δσi−1,∇sJ(σi)−∇J(σi−1)〉H1(Ω) 6= 0 is

si =
‖δσi − δσi−1‖2

H1(Ω)

〈δσi − δσi−1,∇sJ(σi)−∇sJ(σi−1)〉H1(Ω)

. (3.12)

Otherwise si =∞.

Proof. For simplicity let ∆x := δσi−δσi−1 and ∆j := ∇sJ(σi)−∇sJ(σi−1),
and let’s assume that 〈∆x,∆j〉 6= 0, then

ζ(s) = ‖s−1∆x−∆j‖2 = s−2‖∆x‖2 + ‖∆j‖2 − 2s−1〈∆x,∆j〉. (3.13)

Now differentiating in s yields

ζ ′(s) = −2s−3‖∆x‖2 + 2s−2〈∆x,∆j〉, (3.14)

ζ ′′(s) = 6s−4‖∆x‖2 − 4s−3〈∆x,∆j〉. (3.15)

Solving (3.14) equal zero yields

0 = −2s−3‖∆x‖2 + 2s−2〈∆x,∆j〉,
0 = −‖∆x‖2 + s〈∆x,∆j〉,

s =
‖∆x‖2

〈∆x,∆j〉 . (3.16)

Note that si is the solution in (3.16). To make sure that si is a minimum
it is sufficient to check that ζ ′′(si) > 0 since ζ is continuous at si except if
∆x = 0 (which effectively eliminates the optimization problem, and is not
relevant), thus

ζ ′′(si) = 6s−4
i ‖∆x‖2 − 4s−3

i 〈∆x,∆j〉
= s−3

i (6s−1
i ‖∆x‖2 − 4〈∆x,∆j〉)

=
〈∆x,∆j〉3

‖∆x‖6 (2〈∆x,∆j〉)

=
2〈∆x,∆j〉4

‖∆x‖6 > 0.

It was initially assumed that 〈∆x,∆j〉 6= 0, however, if 〈∆x,∆j〉 = 0 then
it is easy from (3.13) to see that s =∞ is the solution. �
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From Corollary 3.6 it is evident that it is important to have a maximum
step size, in the case that δσi − δσi−1 ⊥ ∇sJ(σi) − ∇sJ(σi−1) or almost
orthogonal.

Note that Barzilai and Borwein [1] has a small typo as it has s and not
s−1 in (3.11), however, they arrive at the same result as in Corollary 3.6,
which would be incorrect when using s and not s−1. It is also evident
from the description in Barzilai and Borwein [1] that s−1 should be used,
since the first type of step size they discuss relates to ‖∆x − s∆j‖2 i.e.
that ∆x ' s∆j, and they go on to say that equivalently one could look at
‖s∆x−∆j‖2, however, this would result in s∆x ' ∆j, thus it should have
been s−1.

Note that also Jin et al. [9] seems to assume that s and not s−1 should
be used, which results in what corresponds to s−1

i in Corollary 3.6, and
leads to a far too small step size. They also have an error later on (when
using weak monotonicity, see Definition 3.7) with reference to Wright et al.
[13], however, it may be because Wright et al. [13] uses a step size of the
form a = 〈∆x,∆j〉/‖∆x‖2, though the actual step is applied with 1/a
corresponding with Barzilai and Borwein [1] and Corollary 3.6.

With inspiration from Wright et al. [13], then si will be initialized by (3.12),
after which it is thresholded to lie in [smin, smax], where 0 < smin < smax <∞
are user defined constants. It is noted in Wright et al. [13] that BB type step
rules converge faster if we do not restrict ΨP to decrease in every iteration,
and that an occasional increase actually improves the convergence rate. An
occasional increase in ΨP can be used to avoid places where the method
has to take many small steps to ensure the decrease of ΨP . Therefore one
makes sure that the following so called weak monotonicity is satisfied, which
compares ΨP (δσi+1) with the most recent M steps.

Definition 3.7 (Weak Monotonicity) Let τ ∈ (0, 1) and M ∈ N, then
si is said to satisfy the weak monotonicity if the following is satisfied:

ΨP (δσi+1) ≤ max
i−M+1≤j≤i

ΨP (δσj)−
τ

2si
‖δσi+1 − δσi‖2

H1(Ω). (3.17)

As seen for the example in Section 2.1 on page 14 it is advantageous to be
able to use multiple datasets {(gk, φk)}Kk=1, in order to improve the quality
of the reconstruction, and this can simply be done by slightly altering the
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discrepancy term in Definition 3.1 to

J(σ) :=
K∑
k=1

wkJk(σ) =
K∑
k=1

wk
2
‖Fgk(σ)− φk‖2

L2(∂Ω), (3.18)

i.e. where Jk denotes the usual discrepancy term for the data (gk, φk). The
weights wk can be used to prioritize the importance of the datasets, i.e.
for instance if some datasets have higher importance or are measured more
precisely they can be prioritized higher, however, I will just use the weights
wk = 1, ∀k. It follows straightforwardly that

J ′ση = 〈∇J(σ), η〉L2(Ω) =
K∑
k=1

wk〈∇Jk(σ), η〉L2(Ω), (3.19)

where∇Jk(σ) := −∇Fgk(σ)·∇FFgk
(σ)−φk(σ), i.e. the expression in Theorem

3.2 for the data (gk, φk). It should be noted that the definition of the
Sobolev gradient ∇sJ(σ) is still given by Theorem 3.5, but where ∇J(σ) is
the expression given in (3.19). So the theory considered for a single dataset
is almost identical to that of multiple datasets.

It is also useful to consider partial/incomplete data. Let Γ ⊂ ∂Ω, and
assume that supp gk ⊆ Γ, then we can not be sure that suppφk ⊆ Γ even
with no perturbations, as seen in Figure 4.46 on page 107. However, suppose
that we are only able to measure φk at Γ such that we in reality get χΓφk
where χΓ is a characteristic function that equals 1 on Γ and zero otherwise.
Then we can further change the discrepancy term, such that we only seek
to minimize the residual on Γ:

Jk(σ) :=
1

2
‖Fgk(σ)− φk‖2

L2(Γ) =
1

2
‖χΓ(Fgk(σ)− φk)‖L2(∂Ω). (3.20)

Similarly we get

∇Jk(σ) := −∇Fgk(σ) · ∇FχΓ(Fgk
(σ)−φk)(σ), (3.21)

i.e. the change to include partial data is very subtle, and we note that if
Γ = ∂Ω we obviously get the usual results for complete data.
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3.2 Sparsity Regularization
The main focus of the thesis is on sparsity regularization, so firstly we must
define what is meant by sparsity regularization, which will be a specific
penalty term for Definition 3.1.

Definition 3.8 Let δσ ∈ A0, and let {ψk}k∈N be a basis for H1
0 (Ω), then

the functional ΨS is defined as

ΨS(δσ) = J(σ0 + δσ) +Rα,r(δσ),

where for δσ =
∑

k∈N ckψk, and α = {αk}k∈N ⊂ (0, 1],

Rα,r(η) :=
1

r

∑
k∈N

αk|ck|r, r ∈ [1, 2].

In order to achieve sparsity with respect to the chosen basis {ψk}, i.e.
that δσ can be expanded using only a small number of the basis functions,
then r ∈ [1, 2) is usually chosen in order to penalize δσ with many small
coefficients, i.e. |ck| < 1 and rather accept δσ with few larger coefficients
|ck| > 1. In this thesis we only look at the case where r = 1, thus we have

ΨS(δσ) = J(σ) +Rα,1(δσ) =
1

2
‖Fg(σ)− φ‖2

L2(∂Ω) +
∑
k∈N

αk|ck|.

Now we may be concerned for whether Rα,1(δσ) is convergent, for which we
have to assume that δσ is sparse with respect to the chosen basis {ψk}.

Definition 3.9 (Sparsity w.r.t. Basis) Let {ψk} be a basis for a Banach
Space V , then we say that f ∈ V is sparse w.r.t. {ψk} if

∑
k|ck| <∞ where

f =
∑

k ckψk.

Note that the role of Definition 3.9 is simply to allow the use of the term
Rα,1(δσ). Therefore we introduce a so called sparsity constraint, namely,
because Rα,1(δσ) is not guaranteed to converge in general and the solution
is restricted to a certain subset of A, and ideally in terms of sparsity we
can find a good approximate solution that only has finitely many non-zero
expansion coefficients.

In terms of sparsity, we do not specifically seek the usual `1-term given
in Definition 3.9, but rather

∑
k χR\{0}(ck) where χR\{0} is a characteristic
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function on the set R \ {0}, i.e. that sparsity is simply a count of non-zero
expansion coefficients. This would lead to the penalty term

∑
k αkχR\{0}(ck)

instead of that in Definition 3.8. The reason that we tend to a sort of pseudo
sparsity instead is due to

∑
k αkχR\{0}(ck) not being convex, which is an

essential property for finding a unique minimizer with iterative gradient
methods. The penalty term Rα,1 allows solutions where all the expansion
coefficients are small but non-zero. However, if the true solution only has a
small number of non-zero expansion coefficients, then the discrepancy term
along with the penalty term Rα,1 attempt to construct solutions where the
non-zero coefficients in the true solution are dominant. A penalty of Rα,2
in the usual Tikhonov regularization is more likely to include coefficients
that are not supposed to be non-zero, simply due to the dampening by |ck|2
for |ck| < 1, which can give a negligible penalty.

Furthermore, it should be noted that there are multiple regularization pa-
rameters, namely, one per basis function. In Jin et al. [9] they used a single
parameter αk = α, ∀k which is quite common in regularization techniques.
However, having one parameter per basis function gives a special type of
flexibility with respect to applying prior knowledge about the sparsity of
the solution, which we will return to in the numerical experiments presented
in Chapter 4 on page 57.

Now a new non-linear operator will be introduced, which is known as soft
shrinkage/thresholding operator.

Definition 3.10 (Soft Shrinkage/Thresholding Operator)
The soft shrinkage/thresholding operator Sβ : R → R is for β ≥ 0 defined
as

Sβ(x) := sign(x) max{|x| − β, 0}, x ∈ R. (3.22)

Suppose that f ∈ V for some separable Banach space V with basis {ψk},
for which f =

∑
k ckψk. Furthermore, let β := {βk} ⊂ [0,∞), then define

Sβ : V → V as

Sβ(f) :=
∑
k

Sβk(ck)ψk. (3.23)

The reason for the name soft thresholding, is due to Sβ being continuous,
unlike the usual hard thresholding for which everything with absolute value
below a certain constant β is set to zero. The difference between soft and
hard thresholding can be seen in Figure 3.1 on the facing page.
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Figure 3.1: Soft and hard thresholding functions on the real line.

The operator Sβ is non-linear, however, there is the following useful prop-
erty.

Lemma 3.11 Let c > 0 then

Sβ(cx) = cSβ/c(x), x ∈ R. (3.24)

Proof. Here we will go through the three different cases for x ∈ R.

c|x| < β: Since c > 0 then we have that |cx| < β, thus Sβ(cx) = 0. However,
we also have that |x| < β/c, i.e. Sβ/c(x) = 0, hence (3.24) holds.

cx > β: Since c > 0 and β ≥ 0 then x > 0, i.e. we have Sβ(cx) = cx − β.
Similarly we have that x > β/c thus cSβ/c(x) = c(x − β/c) = cx − β, and
again (3.24) holds.

cx < −β: In this case x < 0 and such that |cx| > β, i.e. we have Sβ(cx) =
−(|cx| − β) = cx + β. Similarly x < −β/c i.e. |x| > β/c so cSβ/c(x) =
−c(|x| − β/c) = cx+ β. �

The non-linearity of Fg makes it hard to determine a descent direction for
ΨS. Instead we can linearise the discrepancy term J in each iteration, and
use an approximation to ΨS to propose a gradient step. In order to linearise
J it is already now considered that a Barzilai-Borwein (BB) step size rule
will be applied, for which we approximate the Hessian J ′′σi ' J ′σ − J ′σi with
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∇sJ(σ)−∇sJ(σi) ' 1
si

(δσ−δσi) where si is the step length and σi = σ0+δσi
and δσi corresponds to the i’th iteration in the coming scheme. Thus by
Theorem C.5 we have

J(σ) ' J(σi) + J ′σi(σ − σi) +
1

2
(J ′σ − J ′σi)(σ − σi)

= J(σi) + 〈∇sJ(σi), δσ − δσi〉H1(Ω)

+
1

2
〈∇sJ(σ)−∇sJ(σi), δσ − δσi〉H1(Ω)

' J(σi) + 〈∇sJ(σi), δσ − δσi〉H1(Ω) +
1

2si
‖δσ − δσi‖2

H1(Ω). (3.25)

Now given a step length si and previous iterate δσi, we will determine δσi+1

by minimizing an approximation of ΨS(δσ)−ΨS(δσi) in terms of δσ, thus
ΨS decreases when ΨS(δσi+1)−ΨS(δσi) < 0. Hence from (3.25) we get

ΨS(δσ)−ΨS(δσi) = J(σ)− J(σi) +Rα,1(δσ)−Rα,1(δσi)

' 〈∇sJ(σi), δσ − δσi〉H1(Ω) +
1

2si
‖δσ − δσi‖2

H1(Ω)

+Rα,1(δσ)−Rα,1(δσi). (3.26)

This can be simplified in the following manner.

Theorem 3.12 Consider the following optimization problem,

min
δσ∈A0

Υ(δσ) =
1

2
‖δσ − (δσi − si∇sJ(σi))‖2

H1(Ω) + siRα,1(δσ). (3.27)

Let {ψk} be the basis of H1
0 (Ω) from Definition 3.8, and let {vk} be the

expansion coefficients such that δσi − si∇sJ(σi) =
∑

k∈N vkψk. Then the
following holds:

(i) (3.27) is equivalent with minimizing (3.26) w.r.t. δσ ∈ A0.

(ii) If {ψk} are orthogonal in the H1-metric (note they need not be nor-
malized), then Υ is convex on A0. The solution to (3.27) is:

δσi+1 = Sβi
(δσi − si∇sJ(σi)) =

∑
k∈N

Sβk(vk)ψk, (3.28)

where βk := siαk

‖ψk‖2H1(Ω)

.

Proof. The proof consists of three steps, one showing (3.27) is equivalent
with (3.26), one showing that (3.27) is convex, and finally one that solves
(3.27).
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Equivalence of (3.26) and (3.27): Rewriting f1(δσ) := 1
2si
‖δσ − (δσi −

si∇sJ(σi))‖2
H1(Ω) yields:

f1(δσ) =
1

2si
‖(δσ − δσi) + si∇sJ(σi)‖2

H1(Ω)

=
1

2si
‖δσ − δσi‖2

H1(Ω) + 〈∇sJ(σi), δσ − δσi〉H1(Ω) +
si
2
‖∇sJ(σi)‖2

H1(Ω).

(3.29)

An optimization problem is equivalent if the objective function is multi-
plied with a positive constant or if a constant is added. So by (3.29) then
(3.27) must be equivalent with the minimization problem with the objective
function being:

Υ̃(δσ) :=
1

si
Υ(δσ)− si

2
‖∇sJ(σi)‖2

H1(Ω) −Rα,1(δσi)

= 〈∇sJ(σi), δσ − δσi〉H1(Ω) +
1

2si
‖δσ − δσi‖2

H1(Ω) +Rα,1(δσ)

−Rα,1(δσi),

this is precisely the expression in (3.26).

Υ is convex on A0: Because {ψk} are orthogonal then

Rα,1(x) =
∑
k∈N

αk

‖ψk‖2
H1(Ω)

|〈x, ψk〉H1(Ω)|,

as {ψk/‖ψk‖H1(Ω)} is an orthonormal basis of H1
0 (Ω). The fact that {ψk}

is a basis means that we do not have to worry about convergence issues
for the infinite sum when checking for convexity. As a linear combination
of convex functions is convex, it suffices to check that each of the summed
terms are convex. So let

f1(x) :=
1

2
‖x− y‖2

H1(Ω),

f2(x) := |〈x, y〉H1(Ω)|,
then the question of whether Υ is convex boils down to whether f1 and
f2 are convex for some y ∈ H1

0 (Ω). Let x1, x2 ∈ A0 and t ∈ [0, 1], then
x := (1− t)x1 + tx2 ∈ A0 as A0 is convex by Corollary 2.6. By the triangle
inequality it follows that

f2((1− t)x1 + tx2) = |〈(1− t)x1 + tx2, y〉|
≤ (1− t)|〈x1, y〉|+ t|〈x2, y〉|
= (1− t)f2(x1) + tf2(x2),
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thus f2 is convex. Now checking f1:

f1((1− t)x1 + tx2) =
1

2
‖(1− t)x1 + tx2 − y‖2

=
1

2
‖(1− t)(x1 − y) + t(x2 − y)‖2

=
1

2
(1− t)2‖x1 − y‖2 +

1

2
t2‖x2 − y‖2

+ (1− t)t〈x1 − y, x2 − y〉
= (1− t)2f1(x1) + t2f1(x2) + (1− t)t〈x1 − y, x2 − y〉.

(3.30)

Note that (1− t)f1 − (1− t)2f1 = (1− t)tf1, thus we have

(1− t)f1(x1) + tf1(x2)− (1− t)2f1(x1)− t2f1(x2) = (1− t)t(f1(x1) +f1(x2)).
(3.31)

Now consider 0 ≤ (a− b)2 = a2 + b2− 2ab thus ab ≤ 1
2
(a2 + b2), this simple

inequality along with Cauchy-Schwartz’ inequality will now be applied to
the following where it is noted that (1− t)t ≥ 0 as t ∈ [0, 1]:

(1− t)t〈x1 − y, x2 − y〉 ≤ (1− t)t‖x1 − y‖‖x2 − y‖

≤ 1

2
(1− t)t(‖x1 − y‖2 + ‖x2 − y‖2)

= (1− t)t(f1(x1) + f1(x2)). (3.32)

So from (3.32) and (3.31) then

(1− t)2f1(x1) + t2f1(x2) + (1− t)t〈x1 − y, x2 − y〉
≤ (1− t)2f1(x1) + t2f1(x2) + (1− t)t(f1(x1) + f1(x2))

= (1− t)f1(x1) + tf1(x2). (3.33)

Now inserting (3.33) into (3.30) yields

f1((1− t)x1 + tx2) ≤ (1− t)f1(x1) + tf1(x2),

thus f1 and thereby also Υ is convex on A0.

Solving (3.27) with {ψk} being an orthogonal basis: If {ψk} is an or-
thogonal basis forH1

0 (Ω) in theH1-metric, then normalizing pk := ψk

‖ψk‖H1(Ω)
,

k ∈ N, yields an orthonormal basis. By Corollary 2.6 then A0 is closed and
convex, and Υ is convex on A0, thus (3.27) is a convex optimization problem
which means that the problem boils down to finding a stationary point.
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In order to simplify the notation in the proof let f := δσ, h := δσi −
si∇sJ(σi), and let fk := 〈f, pk〉 and hk := 〈h, pk〉 (i.e. the expansion coeffi-
cients in the {pk}-basis [19]). If {ck} are the expansion coefficients of f in
the {ψk}-basis, then clearly ck = fk/‖ψk‖. Furthermore, let γk := βk‖ψk‖
so we have

siRα,1(f) =
∑
k

siαk|ck| =
∑
k

siαk
‖ψk‖

|fk| =
∑
k

γk|fk|.

Thus Υ becomes

Υ(f) =
1

2
‖f − h‖2 +

∑
k

γk|fk|. (3.34)

Note that 〈f, h〉 =
∑

k

∑
k̃〈fkpk, hk̃pk̃〉 =

∑
k fkhk as {pk} is orthonormal.

So using the fundamental result for orthonormal bases that ‖f‖2 =
∑

k|fk|
2

[19] then

1

2
‖f − h‖2 =

1

2
‖f‖2 +

1

2
‖h‖2 − 〈f, h〉

=
∑
k

[
1

2
(f 2
k + h2

k)− fkhk
]
.

Insertion into (3.34) gives

Υ(f) =
∑
k

[
1

2
(f 2
k + h2

k) + γk|fk| − fkhk
]

=
∑
k

Υk(fk). (3.35)

From (3.35) it is evident that minimizing Υ w.r.t. f corresponds to mini-
mizing Υk w.r.t. fk for each k. Since the term |fk| is not differentiable at
0, it is initially assumed that fk 6= 0, so

Υ′k(fk) = fk + γk sign(fk)− hk, fk 6= 0. (3.36)

Let fk > 0, solving (3.36) equal zero yields fk = hk − γk. Thus a condition
for fk to be stationary for fk > 0 is that hk > γk. Similarly for fk < 0 we
get fk = hk + γk thus we need hk < −γk for fk < 0 being stationary. What
remains is to consider |hk| ≤ γk, then fk is not stationary for fk > 0 or
fk < 0. Thus we must set fk = 0 as the optimal value is not at a stationary
point, and ±∞ is not a valid option as seen from (3.35). Therefore we can
conclude that

fk =


hk − γk, hk > γk,

hk + γk, hk < −γk
0, |hk| ≤ γk

= Sγk(hk). (3.37)
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Now inserting that ‖ψk‖ck = fk, ‖ψk‖vk = hk and ‖ψk‖βk = γk, and
applying Lemma 3.11,

ck =
fk
‖ψk‖

=
1

‖ψk‖
Sβk‖ψk‖(‖ψk‖vk) = Sβk(vk),

which is the result in (3.28). �

From Theorem 3.12 then vk = 1
‖ψk‖2H1(Ω)

〈δσi − si∇sJ(σi), ψk〉H1(Ω) as we

have an orthogonal basis [19], however, we shall later look at bases that are
only almost orthogonal, i.e. that almost all the basis functions are mutually
orthogonal. Therefore the notation in terms of expansion coefficients vk is
useful in order to remain consistent.

3.3 Total Variation Regularization
While the main focus for this thesis is on the sparsity regularization, there
is another interesting form of regularization that will be investigated called
total variation (TV) regularization. The reason for looking into this type
of regularization is due to its ability to make piecewise constant reconstruc-
tions, something that is normally quite hard to do with regularization tech-
niques that usually finds smooth reconstructions. In Chapter 4 on page 57
we will experiment with piecewise constant inclusions and while TV regu-
larization should be tailored for that type of solutions, the ill-posedness of
the problem will prove a harsh challenge. Now to actually define TV.

Definition 3.13 (Total Variation) Let f : Ω → R such that ∇f ∈
L1(Ω), the total variation PTV(f) of f is

PTV(f) :=

∫
Ω

|∇f |dx. (3.38)

Thus ideally we would like the penalty term P in Definition 3.1 to be
PTV, however, everything becomes much easier when the penalty term is
Gâteaux differentiable, and since x 7→ |x| is not differentiable at x = 0, so
is PTV(f) not differentiable at ∇f = 0. To accommodate this we introduce
a parameter c > 0 via

PTV,c(f) :=

∫
Ω

√
|∇f |2 + cdx. (3.39)
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Note that PTV,0 = PTV, and to illustrate the behaviour of PTV,c with respect

to c, it is shown in Figure 3.2 how
√
|x|2 + c approximates |x| quite well

for sufficiently small c, while retaining a smooth corner at x = 0.
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Figure 3.2: Approximating |x| (black) by
√
|x|2 + c for various values of

c.

The regularization will be controlled by β and c as shown in the following
definition, where ΨTV is the objective function for the TV regularization.

Definition 3.14 Let δσ ∈ A0, and let β > 0 and c > 0 then the functional
ΨTV is defined as

ΨTV(δσ) = J(σ0 + δσ) + βPTV,c(δσ).

Now let’s find some derivatives of PTV,c, as they will be used in the lineari-
sation for the gradient method.

Lemma 3.15 (First and Second Order Derivatives of PTV,c)
The first and second order Gâteaux derivatives for PTV,c at δσ are

(PTV,c)
′
δση =

∫
Ω

f−1/2∇δσ · ∇ηdx, (3.40)

(PTV,c)
′′
δση =

∫
Ω

f−1/2|∇η|2 − f−3/2(∇δσ · ∇η)2dx. (3.41)
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where f := |∇δσ|2 + c.

Proof. Let fε := |∇(δσ + εη)|2 + c, then
d

dε
fε = 2∇(δσ + εη) · ∇η.

Starting at the beginning we find (PTV,c)
′
δσ:

d

dε
PTV,c(δσ + εη) =

∫
Ω

d

dε

√
fεdx

=

∫
Ω

d
dε
fε

2
√
fε
dx

=

∫
Ω

∇(δσ + εη) · ∇η√
fε

dx

thus

(PTV,c)
′
δση =

d

dε
PTV,c(δσ + εη)|ε=0 =

∫
Ω

f−1/2∇δσ · ∇ηdx.

Now for the second order derivative:
d

dε
(PTV,c)

′
δσ+εηη =

∫
Ω

d

dε
f−1/2
ε ∇(δσ + εη) · ∇ηdx

=

∫
Ω

f−1/2
ε |∇η|2 − 1

2
f−3/2
ε ∇(δσ + εη) · ∇η d

dε
fεdx

=

∫
Ω

f−1/2
ε |∇η|2 − f−3/2

ε (∇(δσ + εη) · ∇η)2dx,

thus

(PTV,c)
′′
δση =

d

dε
(PTV,c)

′
δσ+εηη|ε=0

=

∫
Ω

f−1/2|∇η|2 − f−3/2(∇δσ · ∇η)2dx,

giving the expression from (3.41). �

Now similar to (3.26), we get the following using a second order approxi-
mation to the TV-term

ΨTV(δσ)−ΨTV(δσi) = J(σ)− J(σi) + βPTV,c(δσ)− βPTV,c(δσi)

' 〈∇sJ(σi), δσ − δσi〉H1(Ω) +
1

2si
‖δσ − δσi‖2

H1(Ω)

+ β(PTV,c)
′
δσi

(δσ − δσi) +
β

2
(PTV,c)

′′
δσi

(δσ − δσi).
(3.42)
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Similar to Theorem 3.12 we can simplify this problem.

Theorem 3.16 Consider the following optimization problem,

min
δσ∈A0

Υ(δσ) =
1

2
‖δσ − γi‖2

H1(Ω) +
siβ

2

∫
Ω

f
−1/2
i |∇δσ|2dx

+
siβ

2

∫
Ω

f
−3/2
i (∇δσi · ∇δσ)(2|∇δσi|2 − (∇δσi · ∇δσ))dx,

(3.43)

where fi := |∇δσi|2 +c and γi := δσi−si∇sJ(σi). Then the following holds:

(i) (3.43) is equivalent with minimizing (3.42) w.r.t. δσ ∈ A0.

(ii) Υ is convex on A0.

(iii) The solution to (3.43) satisfies

〈δσ, η〉H1(Ω) + siβ

∫
Ω

f
−1/2
i ∇δσ · ∇η − f−3/2

i (∇δσi · ∇δσ)(∇δσi · ∇η)dx

= 〈γi, η〉H1(Ω) − siβ
∫

Ω

f
−3/2
i |∇δσi|2∇δσi · ∇ηdx, ∀η ∈ H1

0 (Ω).

(3.44)

Proof. The convexity of the first term of (3.43) follows from the proof
of Theorem 3.12, and similarly can be done for the other squared terms,
while the linear term is convex by definition. Furthermore, A0 is convex by
Corollary 2.6. Thus Υ is indeed convex on A0.

For equivalence between (3.42) and (3.43), the first term of (3.43) follows
the proof of Theorem 3.12 along with the multiplication of si. Thus what
remains is to show that siβ(PTV,c)

′
δσi

(δσ−δσi)+ siβ
2

(PTV,c)
′′
δσi

(δσ−δσi) equals
the final terms of (3.43) up to multiplication of a constant and addition of
a constant. Thus we simply write up and expand the terms:

siβ(PTV,c)
′
δσi

(δσ − δσi) +
siβ

2
(PTV,c)

′′
δσi

(δσ − δσi)

= siβ

∫
Ω

f
−1/2
i (∇δσi · ∇δσ − |∇δσi|2) +

1

2
f
−1/2
i |∇(δσ − δσi)|2

− 1

2
f
−3/2
i (∇δσi · ∇(δσ − δσi))2dx

=
siβ

2

∫
Ω

f
−1/2
i |∇δσ|2 + f

−3/2
i (∇δσi · ∇δσ)(2|∇δσi|2 − (∇δσi · ∇δσ))

− f−1/2
i |∇δσi|2 − f−3/2

i |∇δσi|4dx, (3.45)
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thus removing the constant term − siβ
2

∫
Ω
f
−1/2
i |∇δσi|2 + f

−3/2
i |∇δσi|4dx

yields the expression in (3.43).

Now in order to solve (3.43), we need find a stationary point as the problem
is convex, and thus solve Υ′δση = 0, ∀η ∈ H1

0 (Ω). So first of all Υ′δσ has to
be determined. This will be done in multiple steps for clarity,

d

dε

1

2
‖δσ + εη − γi‖2

H1(Ω) = 〈δσ + εη − γi, η〉H1(Ω), (3.46)

d

dε

1

2
|∇(δσ + εη)|2 = ∇(δσ + εη) · ∇η, (3.47)

d

dε
∇δσi · ∇(δσ + εη) = ∇δσi · ∇η, (3.48)

d

dε

1

2
(∇δσi · ∇(δσ + εη))2 = (∇δσi · ∇(δσ + εη))(∇δσi · ∇η). (3.49)

Now inserting the expressions (3.46) through (3.49) into d
dε

Υ(δσ + εη)|ε=0

yields

Υ′δση = 〈δσ − γi, η〉H1(Ω) + siβ

∫
Ω

f
−1/2
i ∇δσ · ∇η + f

−3/2
i |∇δσi|2∇δσi · ∇η

− f−3/2
i (∇δσi · ∇δσ)(∇δσi · ∇η)dx, η ∈ H1

0 (Ω). (3.50)

Now solving Υ′δση = 0, ∀η ∈ H1
0 (Ω) yields (3.44) via (3.50). �

The expression (3.44) seems awfully complicated and seemingly hard to
solve, however, we may also recognize that it is similar to a weak formula-
tion of a PDE. Hence it can be solved numerically as such using for instance
a finite element method. However, before solving the above problem numer-
ically, it is always convenient to show that there exists a unique solution.

Corollary 3.17 The expression in (3.44) has a unique solution δσ ∈ H1
0 (Ω).

Proof. The proof will be an exercise in the Lax-Milgram theorem (Theorem
C.3). From (3.44) the forms for Theorem C.3 has already been separated
on each side of the equality sign,

B(δσ, η) := 〈δσ, η〉H1(Ω) + siβ

∫
Ω

f
−1/2
i ∇δσ · ∇ηdx

− siβ
∫

Ω

f
−3/2
i (∇δσi · ∇δσ)(∇δσi · ∇η)dx,

L(η) := 〈γi, η〉H1(Ω) − siβ
∫

Ω

f
−3/2
i |∇δσi|2∇δσi · ∇ηdx.
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It is obvious that B is bilinear and that L is linear. Notice that H1
0 (Ω) is

a closed subspace of H̃1(Ω) in the ‖·‖H̃1(Ω)-norm, thus H1
0 (Ω) is indeed a

Hilbert space when equipped with the H̃1(Ω) inner product from Lemma
2.2. Now to show that L is bounded in H1

0 (Ω). Here Cauchy-Schwartz’
inequality and Lemma 2.2 is applied for the first term in L, and for the
second term a simple upper bound is applied via the supremum followed by
Cauchy-Schwartz’ inequality:

|L(η)| ≤ |〈γi, η〉H1(Ω)|+ siβ

∣∣∣∣∫
Ω

f
−3/2
i |∇δσi|2∇δσi · ∇ηdx

∣∣∣∣
≤ ‖γi‖H1(Ω)‖η‖H1(Ω) + siβ sup

Ω

[
f
−3/2
i |∇δσi|2

]
|〈δσi, η〉H̃1(Ω)|

≤
(
C‖γi‖H1(Ω) + siβ‖δσi‖H̃1(Ω) sup

Ω

[
f
−3/2
i |∇δσi|2

])
‖η‖H̃1(Ω).

(3.51)

Here it should be noted that γi, δσi ∈ H1
0 (Ω) and the above expression

therefore makes sense. What remains for L to be bounded via (3.51) is to
show that the expression supΩ

[
f
−3/2
i |∇δσi|2

]
is bounded:

f
−3/2
i |∇δσi|2 =

|∇δσi|2

(|∇δσi|2 + c)3/2
≤ |∇δσi|2 + c

(|∇δσi|2 + c)3/2

= (|∇δσi|2 + c)−1/2 ≤ c−1/2 <∞, (3.52)

thus L is a linear and bounded functional on H1
0 (Ω).

Now let’s turn the attention towards B, where Theorem C.3(i) will be
shown:

|B(δσ, η)| ≤ |〈δσ, η〉H1(Ω)|+ siβ

∣∣∣∣∫
Ω

f
−1/2
i ∇δσ · ∇ηdx

∣∣∣∣
+ siβ

∫
Ω

|f−3/2
i (∇δσi · ∇δσ)(∇δσi · ∇η)|dx.

For the first term we will again make use of Cauchy-Schwartz’ inequality
and Lemma 2.2. For the second term supΩ f

−1/2
i will be pulled outside

and Cauchy-Schwartz’ inequality will be applied to the remaining inner
product. Lastly for the third term Cauchy-Schwartz’ inequality will be
applied to get |f−3/2

i (∇δσi ·∇δσ)(∇δσi ·∇η)| ≤ f
−3/2
i |∇δσi|2|∇δσ||∇η|, and

supΩ f
−3/2
i |∇δσi|2 is pulled out, and finally Hölder’s inequality is applied to
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the remaining integral:

|B(δσ, η)| ≤ C2‖δσ‖H̃1(Ω)‖η‖H̃1(Ω) + siβ sup
Ω
f
−1/2
i |〈δσ, η〉H̃1(Ω)|

+ siβ sup
Ω

[
f
−3/2
i |∇δσi|2

]
‖∇δσ‖L2(Ω)‖∇η‖L2(Ω)

=

(
C2 + siβ sup

Ω

[
f
−1/2
i + f

−3/2
i |∇δσi|2

])
‖δσ‖H̃1(Ω)‖η‖H̃1(Ω).

(3.53)

What remains in order to show Theorem C.3(i) from (3.53) is that the
expression supΩ

[
f
−1/2
i + f

−3/2
i |∇δσi|2

]
is bounded, which is done by using

(3.52) and that f−1/2
i ≤ c−1/2 <∞.

Now to show Theorem C.3(ii):

B(δσ, δσ) = ‖δσ‖2
H1(Ω)+siβ

∫
Ω

f
−1/2
i |∇δσ|2dx−siβ

∫
Ω

f
−3/2
i (∇δσi·∇δσ)2dx.

For the first term Lemma 2.2 will be applied. For the third term due to the
negativity sign, that siβ > 0, and that the integrand is non-negative, then
Cauchy-Schwartz’ inequality can be applied as a ≥ inequality for∇δσi·∇δσ:

B(δσ, δσ) ≥ C‖δσ‖2
H̃1(Ω) + siβ

∫
Ω

[
f
−1/2
i − f−3/2

i |∇δσi|2
]
|∇δσ|2dx

≥
(
C + siβ inf

Ω

[
f
−1/2
i − f−3/2

i |∇δσi|2
])
‖δσ‖2

H̃1(Ω). (3.54)

Since the constant C from Lemma 2.2 is positive, what remains in order to
show Theorem C.3(ii) from (3.54) is to show that infΩ

[
f
−1/2
i − f−3/2

i |∇δσi|2
]

is bounded from below and does not make the expression in front of ‖δσ‖2
H̃1(Ω)

negative:

f
−1/2
i − f−3/2

i |∇δσi|2 ≥ f
−1/2
i − f−3/2

i (|∇δσi|2 + c) = f
−1/2
i − f−3/2

i fi = 0,

thus Theorem C.3(ii) holds.

Hence we can conclude the proof using Theorem C.3, that (3.44) has a
unique solution δσ ∈ H1

0 (Ω). �



4

Numerical Experiments Using
the Finite Element Method

For the numerical experiments with the previously explained algorithms,
the finite element method (FEM) will be applied, which is a very popular
method for solving PDE’s. While this thesis is not focusing on how FEM
works in practice, there will be a small introduction on some properties that
will be useful for understanding the solutions from this method.

The elements I will be using are so called continuous Galarkin elements
of first degree, which means that the domain Ω is discretized in a triangle
mesh, and FEM solutions will be continuous piecewise linear interpolations
between correct values defined at the triangle nodes. This gives a finite
dimensional closed space Vh ⊆ H1(Ω) (since continuous piecewise linear
functions on a bounded domain are weak-differentiable), so solving a PDE
with this FEM corresponds to a projection from the solution in H1(Ω) and
onto Vh.

Let ψk ∈ Vh be the function that is zero at all nodes except at the k’th node
where it has the value 1, which can be written as ψk(xj) = δk,j with δk,j
being Kronecker’s delta, and xj be the location of the j′th node. Note that
the support of ψk is restricted to the polygon comprised of the neighbouring
nodes, see Figure 4.1 on the next page.

{ψk} is a basis for Vh, as any linear combination of piecewise linear functions,
is also a piecewise linear function, and the nodes are the only degrees of
freedom in Vh. Let u ∈ Vh then we have the following exceptionally useful



58 4. Numerical Experiments Using the Finite Element Method

Figure 4.1: 3D plot of a single basis function for the FEM basis as a
surface plot and wireframe.

property
u(x) =

∑
k

u(xk)ψk(x), x ∈ Ω,

where xk is the location of the k’th node. Thus any function in Vh is
expanded via its own discretized function at the nodes. It should also be
noted that something as simple as a product of two functions in Vh or
taking the absolute value of such functions will sometimes lead to functions
outside Vh, as they can only be determined on a finer mesh, as seen in
Figure 4.2 where additional nodes would be required at the zeroes in order
to accurately determine the absolute value of a function. For this reason

0

original
FEM absolute
true absolute

Figure 4.2: 1D case of absolute value of a FEM-function on a very coarse
grid.
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we will approximate such operations such that they remain in Vh and are
exact on the mesh nodes, i.e.

|f(x)| :=
∑
k

|f(xk)|ψk(x), x ∈ Ω, f ∈ Vh,

(f1f2)(x) :=
∑
k

f1(xk)f2(xk)ψ(x), x ∈ Ω, f1, f2 ∈ Vh.

Note how {ψk} is firstly only a basis for Vh which is only a small subspace
of H1(Ω). Secondly {ψk} is not orthogonal, namely, due to an overlapping
support of the non-negative basis functions corresponding to neighbouring
nodes. Thus we have an almost orthogonal basis, as any one basis function
is orthogonal to all other basis functions except for the basis functions at
neighbouring nodes.

In Jin et al. [9] they use the FEM basis anyway assuming orthonormality,
since their result for Theorem 3.12 relies on an orthonormal basis. How-
ever, {ψk} is not even an orthogonal basis, and only a basis for a finite
dimensional subspace of H1

0 (Ω). So let’s try instead to find an approxi-
mate solution to (3.27) using only the assumption that we use Vh and not
anything about orthogonality.

Theorem 4.1 (FEM Approximate Step) Given δσi,∇sJ(σi) ∈ Vh and
Rα,1 is given for Vh in terms of the {ψk}-basis. Let {xk} denote the locations
of the mesh nodes. Then

min
δσ∈Vh

Υ(δσ) =
1

2
‖δσ − (δσi − si∇sJ(σi))‖2

H1(Ω) + siRα,1(δσ), (4.1)

is approximately solved by

δσi+1 :=
∑
k

Ssiαk/‖ψk‖L1(Ω)
(δσi(xk)− si∇sJ(σi)(xk))ψk, (4.2)

i.e.
δσi+1(xk) =

∑
k

Ssiαk/‖ψk‖L1(Ω)
(δσi(xk)− si∇sJ(σi)(xk)).

Proof. Let f := δσ with fk := δσ(xk) and h := δσi − si∇sJ(σi) with
hk := δσi(xk)−si∇sJ(σi)(xk). Similarly fx,k etc. will denote d

dx
f(xk), where

f here denotes the underlying smoother function that has been discretized.
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Assuming d = 2 (the proof is similar for d = 3), then

Υ(f) =
1

2
‖f − h‖2

H1(Ω) +
∑
k

siαk|fk|

=
1

2

∫
Ω

|f − h|2dx+
1

2

∫
Ω

|∇f −∇h|2dx+
∑
k

siαk|fk|

=
1

2

∫
Ω

∑
k

(fk − hk)2ψkdx

+
1

2

∫
Ω

∑
k

[
(fx,k − hx,k)2 + (fy,k − hy,k)2

]
ψkdx+

∑
k

siαk|fk|

=
1

2

∑
k

[
(fk − hk)2 + (fx,k − hx,k)2 + (fy,k − hy,k)2

]
‖ψk‖L1(Ω)

+
∑
k

siαk|fk|

=
∑
k

Υk(fk, fx,k, fy,k).

Thus in accordance with the proof of Theorem 3.12 we attempt to minimize
each Υk, however, here we need to do so w.r.t. fk, fx,k and fy,k. It is evident
that the only stationary point w.r.t. fx,k and fy,k are for fx,k = hx,k and
fy,k = hy,k. While minimizing solely w.r.t. fk follows the proof of Theorem
3.12 and yields the result in (4.2).

So in the case that h is not truncated at a node and its neighbouring nodes
by the soft-shrinkage, then we have that ∇f = ∇h locally since f = h
locally up to subtraction with a constant, and it is therefore also optimal
in the fx,k and fy,k sense, see Figure 4.3a on the next page.

If h is truncated at a node and its neighbouring nodes, then f = 0 and
therefore ∇f = 0 locally, however, since siαk is typically very small (even
for large step sizes) this implies that h must be locally close to zero for
the truncation. Since we have a discretization and use piecewise linear
interpolation between the nodes, then h being close to zero implies that h
is very flat, i.e. ∇h ' 0 and therefore approximately optimal for fx,k and
fy,k, see Figure 4.3b on the facing page.

In the case that h is truncated at a node, but not for all the neighbouring
nodes, then there is an error in this particular Υk, see Figure 4.3c on the
next page. However, in a heuristic sense this is a much smaller error com-
pared to what was done in Jin et al. [9] where such approximations would
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0

before threshold
after threshold

(a) Thresholding case 1.

0

before threshold
after threshold

(b) Thresholding case 2.

0

before threshold
after threshold

(c) Thresholding case 3.

Figure 4.3: Three cases in 1D for the soft-shrinkage threshold.

occur at every node, since it was assumed that {ψk} was orthonormal (and
even an orthonormal basis for H1

0 (Ω) and not the finite dimensional FEM
subspace). �

Thus while Theorem 4.1 is heuristic, it gave better solutions compared to the
implementation I made based on Jin et al. [9] where {ψk} was assumed to
be an orthonormal basis. Also note that assuming that {ψk} is orthonormal
does not take the area of the support for the basis functions into account
as seen in Theorem 3.12, where the normalization term would vanish.

Under any circumstances the parameters αk will have to be determined for
a fixed mesh, since a refinement of a mesh would only slightly change the
discrepancy term while the penalty term would be drastically increased,
by simply adding more terms to the summation. This is illustrated in
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Figure 4.4 where a simple splitting of the mesh triangles yields a great
increase in the number of nodes (this is just an example to make the point
about using a fixed mesh for the experiments, and not on how to in practice
refine a mesh. In practice when refining a mesh by splitting triangles, there
is typically also edge flipping involved to make the mesh more even, such as
in Delaunay triangulation). Therefore a fixed mesh will be used throughout
this section for the computations.

Figure 4.4: Illustration of introducing new nodes into a triangulated
mesh, by splitting each triangle. Black lines indicate old
edges, while the dashed blue lines are the edges from the new
nodes.

Since the data used for this thesis will be simulated numerically, this will
be done by solving the forward problem with the exact conductivity using a
very fine mesh, and afterwards it is interpolated onto a much coarser mesh
where noise will be applied, see Figure 4.5 on the next page for the mesh.
The reason for simulating the data on a different mesh, is to avoid the so-
called inverse crimes, which occurs when the data is determined via the same
mesh as the solver is applying. Inverse crimes often gives unnaturally good
reconstructions that are not comparable with what you would normally get
from real-world data.

To summarize the algorithm that will be applied, pseudo code of the al-
gorithm is presented in Algorithm 1 and Algorithm 2. It is worth noting
that a minimum smin and a maximum smax initial step size is used. The
maximum step size is to avoid exceptionally large step sizes from (3.12)
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(a) Fine mesh with 8152 triangles. (b) Coarse mesh with 2880 triangles.

Figure 4.5: Fine and coarse mesh that will be used for numerical experi-
ments.

when 〈δσi − δσi−1,∇sJ(σi) − ∇J(σi−1)〉H1(Ω) ' 0, and the minimum step
size is to check if a slightly larger step size is acceptable if the computed BB
step size is very small (and if smin is not acceptable it will automatically be
reduced).

Algorithm 1 Algorithm for choosing step size.
procedure StepSize

Compute si by (3.12)
Threshold si by si := min{max{si, smin}, smax}
while si not accepted do

Compute δσi+1 using one of the following:
(3.28) (sparsity)
(4.2) (sparsity with FEM basis)
(3.44) (TV)
if si and δσi+1 satisfies the weak monotonicity (3.17) then

Accept si and δσi+1

else
si := si/2

end if
end while

end procedure
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Algorithm 2 General framework for the iterative algorithm.
procedure EITsolver

Set i := 0
Set δσi := 0
Compute ΨP (δσi)
while stopping criteria not reached do

Set σi := σ0 + δσi
Compute ∇J(σi) by (3.2)
Compute ∇sJ(σi) as the solution of (3.8)
Compute si and δσi+1 by Algorithm 1
Compute ΨP (δσi+1)
Set i := i+ 1
Check stopping criteria

end while
Return σ := σ0 + δσi

end procedure

4.1 Preparing for the Numerical Experiments

In the following, EIT reconstruction using either sparsity regularization
with the FEM basis or TV regularization are tested in various scenarios to
evaluate their respective strengths and weaknesses. Some parameters, how-
ever, will be fixed throughout all the experiments, τ := 10−5 and M := 5
for the weak monotonicity in Definition 3.7. The parameter c for TV reg-
ularization is fixed at c := 10−5 since this value produced good results. It
should be noted that a too high value of c will generate bad approximations
to the true total variation, cf. (3.38) via (3.39), whilst a too small value
will make the method unstable due to a singularity in the derivative of the
TV penalty term (Lemma 3.15). Furthermore, in sparsity regularization we
will use αk := α, ∀k, i.e. the same parameter for all basis functions, in all
tests except in Section 4.9 on page 115 where we exploit having different
parameters to incorporate prior information into the solution. The mini-
mum and maximum initial step sizes for each iteration are smin = 1 and
smax = 1000.

The stopping criteria are a maximum number of iteration Imax := 200 and
lower bound on the step size sstop := 10−3. The use of sstop has proven
quite effective, because once the step size drops this low, numerical experi-
ments have shown that the method does not change significantly even after
hundreds of additional iterations, strongly indicative of it being stuck at a
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local minimum. Another auspicious stopping criteria would be the change
in the objective function ΨP , however, I have chosen not to apply this as the
method has given much improved solutions (especially in terms of contrast)
even when ΨP has only been reduced very little.

The weights {wk} in (3.19) have been included in the implementation, how-
ever, for these experiments they are all chosen as wk := 1, ∀k, i.e. all the
datasets are weighted equally. Furthermore, Γ := ∂Ω in (3.20), except in
Section 4.8 on page 106 and Section 4.9 on page 115 where there will be
experiments with partial data. The domain Ω used for the experiments will
be the unit disk in R2.

The Neumann-data that will be used for the following tests are:

gN := cos(Nθ),

g̃N := sin(Nθ),
(4.3)

for various N ∈ N, where θ ∈ [0, 2π] is the angular variable for polar
coordinates in Ω. It is easily checked that this form of Neumann-data
satisfies the condition

∫
∂Ω
gds = 0.

The perturbation ε in the data φ := Fg(σ) + ε will be applied to the nodal
points on the boundary via

ε(x`) := ω max
k=1,...,K

max
xj∈{xj}

|[Fgk(σ)](xj)|ζ`, x` ∈ {xj} ⊂ ∂Ω, (4.4)

where K denotes the number of Neumann-datasets gk (which could be a
combination of the types in (4.3)), {xj} denotes the nodel points on the
boundary, ω ∈ [0, 1] denotes the noise level in terms of L∞, and ζ` is nor-
mally N (0, 1) distributed. This is in accordance with the perturbations
used in Jin et al. [9].

Remember that we seek to find σ = σ0+δσ, where σ0 is a known background
conductivity. The background conductivity σ0 will be constant in all tests,
since the true challenge lies in determining δσ and the role of σ0 is quite
minimal as it is assumed to be known. In all tests but one in Section 4.5
on page 94 I will use the background conductivity σ0 := 1 in Ω.

For solving the PDE’s numerically I have used the Python based software
package FEniCS [31], and despite the existence of tools in FEniCS to gen-
erate mesh for simple domains such as the unit disk, I found that the mesh



66 4. Numerical Experiments Using the Finite Element Method

was quite non-uniform. Therefore I have used the software Gmsh [32] to
generate the mesh.

Numerous test of different scenarios will be presented each highlighting spe-
cific properties of the solution. Of these tests, I will emphasize Section 4.8
on page 106 and Section 4.9 on page 115 and encourage the reader to focus
on these sections, where we look into using partial data and further use of
prior information.

From Figure 4.6 it is evident that the sparsity and TV solvers take just
about the same time to run each iteration. The TV solver is negligibly
slower, due to having to solve the weak problem in (3.44). The main com-
putational burden lies with the number of datasets that is applied, i.e. if
K datasets are used then it will need to solve K weak problems for each
evaluation of ΨP , and K + 1 weak problems for finding ∇sJ(σ) via (3.19)
and (3.9) when the forward solutions from the evaluation of ΨP is reused.
ΨP and ∇sJ(σ) have to be evaluated at least once per iteration, and ΨP has
to further be evaluated if a step size reduction is required. So (2 +Z)K + 1
weak problems have to be solved in an iteration for the sparsity solver and
(2+Z)K+2 weak problems for the TV solver, where Z denotes the number
of times the step size has to be reduced (which usually is 0− 1 times).
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Figure 4.6: Computation time for one iteration, for increasingly refined
mesh using 10 datasets.

From Figure 4.6 the computation time for one iteration is almost increasing
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as a straight line in the double-logarithmic scale, i.e. if CT is the computa-
tion time and NT the no. of triangles in the mesh, then

log10(CT ) ' a log10(NT ) + log10(b) = log10(bNa
T )⇒ CT ' bNa

T .

Fitting a first order polynomial to (log10(NT ), log10(CT )) lead to the values
(a, b) = (0.8405, 1.518 · 10−3) for sparsity and (a, b) = (0.8303, 1.712 · 10−3)
for TV. So it is quite evident that sparsity and TV are equal in speed
per iteration, however, it should be noted that TV tends to use far more
iterations than sparsity regularization.

4.2 Validating the Implementation of the
Forward Map

In Section 2.1 on page 14 we saw a case for which the solution of the
forward problem could be determined via known functions in (2.28). This
can be used to validate the implementation for the forward problem, which
is an implementation of the weak formulation (2.13). While the actual
forward map is Fg and is determined on ∂Ω, I will instead look at Fg
which is determined on Ω since this map is involved in also determining the
derivative of the discrepancy term.

For the test I have used a concentric conductivity σC,r̃ (see (2.15)) with
radius r̃ := 0.5 and C := 5, furthermore, N := 5 for gN := cos(Nθ). In
Figure 4.7 on the next page the errors in the H1(Ω)-norm are given for
increasingly refined mesh, and it is evident that the absolute and relative
errors decrease with the refinement in the mesh, in a manner resembling a
straight line in the double-logarithmic scale. Similar to what was done for
Figure 4.6 on the facing page we can determine the rate of decay for the
errors. So let u∗ be the exact solution and u the numerical approximation,
and NT the no. of triangles in the mesh, then

‖u∗ − u‖H1(Ω) ' 1.626N−0.4627
T ,

‖u∗ − u‖H1(Ω)

‖u∗‖H1(Ω)

' 2.077N−0.4646
T .

Thus quadrupling the no. of triangles in the mesh approximately halves
the absolute and relative errors.

The reason for the jagged curves in Figure 4.7 on the next page is that
I used the built-in mesh for the unit circle in FEniCS [31] to easily scale
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Figure 4.7: Absolute and relative errors in the H1-norm, for increasingly
refined mesh.

the triangles in the mesh, however, as aforementioned the mesh is not very
uniform in this tool, and some configurations of the elements are better
suited for the numerical computations.

To elucidate where the errors occur in the implementation, the solution
at the finest mesh in Figure 4.7 is shown in Figure 4.8 on the next page,
where one can see an imprint of the concentric conductivity with radius 0.5,
and it is near the discontinuity of the conductivity that the error is largest.
This makes sense as we deal with piecewise linear elements, so no matter
how small the elements are, there will always be an error in approximating
the discontinuity with a continuous function, which will show up in the
numerical solution of the forward map.
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(a) Exact solution. (b) Numerical solution.

(c) Difference.

Figure 4.8: Exact and numerical solution of the forward case, and the
residual.

4.3 Determining Appropriate Regularization
Parameters, Number of Datasets, and
Noise Level

Choosing a good value for the regularization parameters is key to achieving
good reconstructions from regularized solutions.

This section will go through tests to determine good candidates for regu-
larization parameters for sparsity and TV regularization, as well as inves-
tigating the influence on the solution by the number of Neumann-datasets
applied. Finally, the solutions from sparsity and TV regularization are
investigated for different noise levels to see how robust the methods are
towards noise.
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Regularization Parameters

To get an idea of the magnitude of a good regularization parameter, I have
tested a range of different parameter for the sparsity and TV regularization
with noise levels ω ∈ {0, 10−4, 10−3, 10−2, 10−1}. This is performed using
the conductivity phantom in Figure 4.9 and 6 datasets of Neumann-data,
gN and g̃N from (4.3) with N = 1, 2, 3. It should first of all be noted
that the phantom is actually quite difficult to reconstruct in itself, as it is
discontinuous which is often something that regularization techniques have
huge problems in reconstructing, and the range of the contrast is quite large
for such a small inclusion.

Figure 4.9: Conductivity phantom.

In Figure 4.10 on the next page the L1 and L2 absolute errors are shown for
the reconstructions with different parameters of α, using a few iterations
for each reconstruction. The reason for using both L1 and L2 errors, is due
to L1 giving much larger errors if the support is not well determined (i.e.
if there are small unnecessary oscillations), and L2 errors will be large if
the contrast of the inclusion itself is not well reconstructed. It seems that
a good choice of parameter is α := 2 · 10−5, which will be used for most of
the following tests. However, since sparsity regularization using the FEM
basis is more sensitive to the regularization parameter, there will be some
situations where a different parameter will be applied and this will explicitly
be stated.

Similarly, we can investigate the TV regularization, and as seen in Fig-
ure 4.11 on the facing page the curve is quite flat for low values of β, so



4.3. Regularization Parameters, Datasets, and Noise Level 71

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
α

1.1

1.2

1.3

1.4

1.5

1.6

L
1

-e
rr

or

noise level 0
noise level 10−4

noise level 10−3

noise level 10−2

noise level 10−1

(a) Absolute L1 error.

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
α

1.5

2.0

2.5

3.0

3.5

4.0

L
2

-e
rr

or

noise level 0
noise level 10−4

noise level 10−3

noise level 10−2

noise level 10−1

(b) Absolute L2 error.

Figure 4.10: Sparsity reconstructions for different noise levels, using a
maximum of 50 iterations, for varying regularization param-
eter α.

to promote a piecewise constant solution the largest value of β that yields
a small error is applied. A good parameter is β := 6 · 10−4, and TV regu-
larization is actually quite stable in terms of the regularization parameter
when it comes to different inclusions or mesh, so the parameter will only
rarely be changed in the coming tests.
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Figure 4.11: TV reconstructions for different noise levels, using a maxi-
mum of 50 iterations, for varying regularization parameter
β.

The effects of over regularization, i.e., where the regularization parameter
is chosen too large can be seen in Figure 4.12 on the next page. Over
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regularization in sparsity regularization leads to a very small support, which
is quite intuitive with the penalty term that penalizes non-zero values at
the nodal points. TV regularization display the opposite case, namely, that
the support is vastly overestimated.

(a) Sparsity. (b) TV.

Figure 4.12: Over regularization in sparsity and TV reconstructions using
parameters α = 10−4 and β = 10−1. The noise level is 10−3

and 10 datasets were applied.

In Figure 4.13 we see the effect that noise has on the solution when no
regularization is applied. Here it should also be noted that 10 datasets were
applied, which significantly improves the solution. It appears that with no
noise the method performs okay, however, it is seen that the inclusion itself
has negative values as the background conductivity in Figure 4.9 on page 70
is σ0 := 1.

(a) Noise level 0. (b) Noise level 10−1.

Figure 4.13: Reconstruction using no regularization.
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We shall see in Figure 4.24 on page 82 and Figure 4.25 on page 83 that the
parameters α = 2 ·10−5 and β = 6 ·10−4 found in this section leads to much
better solutions.

Number of Datasets

Given that good candidates for the regularization parameters have been
found, the influence of the number of datasets will now be investigated. In
this test the noise level will be fixed at 10−3, and the tests will be conducted
using 1, 2, 6, 10, and 20 datasets.

0 5 10 15 20
# of datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0
L1

L2

(a) Sparsity.
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Figure 4.14: Absolute error in sparsity and TV reconstructions for dif-
ferent number of Neumann-data, corresponding with Fig-
ure 4.15 on the following page and Figure 4.16 on page 75.

In Figure 4.15 on the following page the results for sparsity reconstruction
can be seen, where especially the case with 1 dataset is quite bad, which
corresponds well with the example in Section 2.1 on page 14 where it was
shown that there are cases where 1 dataset is not enough to uniquely in-
vert the data. As expected the results improve with increasing number of
datasets, and the same is the case for TV regularization as seen in Fig-
ure 4.16 on page 75. However, the doubling from 10 to 20 datasets does not
seem to improve much, which is also evident in Figure 4.14 where the in-
significant decrease in error is completely unjustified by the vast increase in
the number of numerical computations. Therefore the number of datasets
used in the rest of the tests here and in the following sections will be fixed
at 10.
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(a) Conductivity phantom. (b) Data g1.

(c) Data g1 and g̃1. (d) Data gN and g̃N , N = 1, 2, 3.

(e) Data gN and g̃N , N = 1, . . . , 5. (f) Data gN and g̃N , N = 1, . . . , 10.

Figure 4.15: Sparsity reconstructions for different number of Neumann-
data (4.3) with noise level 10−3 and regularization parameter
α := 2 · 10−5.
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(a) Conductivity phantom. (b) Data g1.

(c) Data g1 and g̃1. (d) Data gN and g̃N , N = 1, 2, 3.

(e) Data gN and g̃N , N = 1, . . . , 5. (f) Data gN and g̃N , N = 1, . . . , 10.

Figure 4.16: TV reconstructions for different number of Neumann-data
(4.3) with noise level 10−3 and regularization parameter β :=
6 · 10−4.
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Noise Level

Now the reconstructions for various noise levels will be investigated. In
Figure 4.24 on page 82 it evident that sparsity reconstruction is quite robust,
as very similar reconstructions are found for the different noise levels. It
is seen that the support is slightly smaller for the reconstructions than
the phantom, and this will be characteristic for the sparsity regularization
throughout the tests. However, the contrast is quite close to that of the
phantom which is excellent given that the contrast is actually quite large
for such a small inclusion. For the noise level of 10−1 we do see that it is
slightly more difficult to reconstruct the circular shape of the inclusion.

Figure 4.25 on page 83 shows the reconstructions from TV regularization for
various noise levels, and here it is evident that apart from the noise level of
10−1, the reconstruction are almost identical, and for the noise level of 10−1

we get quite an awful reconstruction. Unlike the sparsity regularization,
the support of the TV reconstruction appear to be slightly larger than the
phantom. However, when it comes to the contrast, the TV regularization
does not perform quite as well as the sparsity regularization. Furthermore,
the TV reconstructions are constant in an area corresponding well with
the support of the phantom yet there is still a smooth transition near the
boundary of the inclusion, so the purpose of finding piecewise constant
solutions with this technique is only partially fulfilled.

The two regularization techniques seem to perform quite well in terms of
determining the support of the inclusion, considering the difficulty of the in-
clusion and the severe ill-posedness of the problem, and the two techniques
also seem to excel at reconstructing different properties of the solution.
That sparsity regularization underestimates the support and TV regulariza-
tion overestimates the support may also explain why sparsity regularization
gives a higher contrast than TV regularization. In Section 2.1 on page 14 we
saw that for concentric conductivities a smaller support and higher contrast
leads to similar Dirichlet-data as a larger support and smaller contrast, and
this may very well also be the case for non-concentric conductivities.

The exact data FgN (σ) along with perturbed data are shown in Figure 4.17
on the next page, and it is evident that there is a dent in FgN (σ) near
θ = 3π

4
' 2.36 (the angular variable on the boundary) which is where the

inclusion in Figure 4.9 on page 70 is closest to the boundary. The dent is
most noticeable for g1 and this small dent is how the inclusion is identified
in the data. When we look at the perturbed data in Figure 4.17b it is not
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surprising that TV regularization has difficulty in reconstructing with this
data, however, it is quite amazing that the sparsity regularization performs
this well.
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Figure 4.17: Exact and perturbed Dirichlet-data with noise level 10−1

corresponding to the Neumann-data gN in (4.3) with N =
1, . . . , 5.

To illustrate the performance of the iterative method some of the iterates
are shown in Figure 4.18 on the following page for sparse regularization and
Figure 4.19 on page 79 for TV regularization, where it is apparent how the
support and contrast improve throughout the iterations.

To further show the performance of the iterative method, the L1 and L2

errors are shown in Figure 4.20 on page 80 for sparsity regularization, and
the errors for TV regularization are depicted in Figure 4.21 on page 80. In
both cases an overall decay is seen in the errors. It is also seen that sparsity



78 4. Numerical Experiments Using the Finite Element Method

(a) Iteration 5. (b) Iteration 10.

(c) Iteration 30. (d) Final iteration.

Figure 4.18: Sparsity reconstruction at different iterations, with noise
level 10−3 and α := 2 · 10−5.

regularization tends to take much fewer iterations while TV regularization
makes use of all total 200 iterations. For the case of noise level 0 and noise
level 10−4 there is a sudden drop in the error for sparsity regularization, after
which it is increased again, this may very well be due to semi-convergence.
Semi-convergence is common in iterative methods since we do not have
the exact data. The method may come very close to the exact solution
(corresponding to data with no perturbation) and then diverge away from
it again towards the biased solution from the regularization [24].

By looking at the objective functions ΨS and ΨTV in Figure 4.22 on page 81
we see an overall decay, which shows that the algorithm is in fact trying to
minimize these functionals. There is also the occasional increase which is
allowed due to the use of the weak monotonicity (3.17).

Finally looking at the step size at different iterations in Figure 4.23 on
page 81, it is evident that it varies quite a lot, and for sparsity regulariza-
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(a) Iteration 5. (b) Iteration 10.

(c) Iteration 30. (d) Final iteration.

Figure 4.19: TV reconstruction at different iterations, with noise level
10−3 and β := 6 · 10−4.

tion it suddenly drops to sstop = 10−3 the stopping criterion, when a local
minimum has been found. All we can say about the step size for TV is that
it varies quite a lot and that it is not reduced below the initial minimum of
smin = 1.

From the above tests for different noise levels it may be too optimistic to
get good results for the noise level 10−1 (at least for total variation), and
the following tests will all be conducted using the noise level 10−3.
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Figure 4.20: Error for sparsity reconstruction at different noise levels with
α := 2 · 10−5.
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Figure 4.21: Error for TV reconstruction at different noise levels with
β := 6 · 10−4.
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Figure 4.22: Objective functional for sparsity and TV reconstruction at
different noise levels with parameters α := 2 · 10−5 and β :=
6 · 10−4.
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Figure 4.23: Step size for sparsity and TV reconstruction at different noise
levels with parameters α := 2 · 10−5 and β := 6 · 10−4.
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(a) Conductivity phantom. (b) Noise level 0.

(c) Noise level 10−4. (d) Noise level 10−3.

(e) Noise level 10−2. (f) Noise level 10−1.

Figure 4.24: Sparsity reconstructions for different noise levels with regu-
larization parameter α := 2 · 10−5.
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(a) Conductivity phantom. (b) Noise level 0.

(c) Noise level 10−4. (d) Noise level 10−3.

(e) Noise level 10−2. (f) Noise level 10−1.

Figure 4.25: TV reconstructions for different noise levels with regulariza-
tion parameter β := 6 · 10−4.
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4.4 Reconstructions for Various Locations,
Sizes, and Amplitudes

In this section, reconstructions based on simple inclusions are investigated in
terms of the location, size, and amplitude of the inclusion δσ. The reason
for looking into these cases is because these parameters for the inclusion
have a lot to say on how well the inclusion is reconstructed in the solution.
The inclusions here will be disks with the format (cx, cy, C, r) where (cx, cy)
will be the centre, C will be the amplitude of the inclusion δσ, and r the
radius.

Location

Here reconstructions of an inclusion is investigated as it is moved from
close to the boundary and towards the centre of the domain. Since the
domain is the unit disk which is symmetric in the angular direction, it is
only interesting to investigate the position with regard to the distance from
the boundary.

From Figure 4.26 through 4.28 on pages 85–87 it is seen that the support
of the inclusion is reconstructed in much the same way, no matter the dis-
tance from the boundary, and the circular shape of the inclusion is also
well reconstructed in all three cases. The contrast, however, is much better
reconstructed for the inclusions closer to the boundary, and this is quite
intuitive, because the closer the inclusion is to the boundary the more sig-
nificantly it can affect the boundary data.

In Figure 4.8a on page 69 we have already seen that the forward map has
a smoothing effect, even on discontinuous conductivities, and this is partly
what makes the inverse problem very ill-posed as inclusion are difficult to
detect in the data.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.26: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(−0.3, 0.3, 5, 0.4). α = 2 · 10−5 and β = 6 · 10−4.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.27: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(−0.15, 0.15, 5, 0.4). α = 2 · 10−5 and β = 6 · 10−4.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.28: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(0, 0, 5, 0.4). α = 2 · 10−5 and β = 6 · 10−4.
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Size

Here reconstructions are performed for inclusions with the same amplitude
but varying size of the support. We saw in the test above that the distance
of the inclusion to the boundary has an effect on the contrast in the recon-
struction, therefore all the inclusions here are constructed such that they
have the same distance to the boundary.

In Figure 4.29 through 4.31 on pages 88–90 it is seen that the shape of the
inclusion and its support are reconstructed well, independent of the size of
the inclusion. From Figure 4.29 the contrast is reconstructed better than
in Figure 4.30 and Figure 4.31, and for TV regularization there is also a
significant improvement in Figure 4.30c over Figure 4.31c.

(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.29: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(0, 0.2, 5, 0.6). α = 2 · 10−5 and β = 6 · 10−4.

In Figure 4.29b there is even an overestimation of the contrast in the middle
of the reconstructed inclusion, and a more reasonable contrast for the rest
of the inclusion. Such overestimations are quite common in regularization
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.30: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(0, 0.4, 5, 0.4). α = 2 · 10−5 and β = 6 · 10−4.

techniques (at least for easier and often linear problems) when attempting
to approximate a discontinuous solution with a continuous reconstruction,
and it is similar to the Gibbs phenomenon that occurs in Fourier series
[18]. This explains why it is easier to reconstruct inclusions with larger
support, as most of the error occurs near the boundary of the inclusion,
and a larger support allows the method to better approximate the interior
of the inclusion.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.31: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(0, 0.5, 5, 0.3). α = 2 · 10−5 and β = 6 · 10−4.

Contrast

Now varying the contrast of an inclusions is tested, where the position and
size is fixed. In Figure 4.32 through 4.34 on pages 91–93 we see the very
intuitive results, namely, that a smaller amplitude of δσ is easier to recon-
struct. In Figure 4.34 we even see that the reconstructions do not come
anywhere near the correct contrast, however, the contrast is also unreason-
able large compared to the size of the inclusion, and the case in Figure 4.33
is already a very difficult case, where the sparsity regularization actually
reconstructs the contrast quite well. In general TV regularization does not
reconstruct the contrast very well, even in the case in Figure 4.32.

Again the support and circular shape of the inclusion are reconstructed
reasonably well, and as a conclusion to this section it appears that the sup-
port and shape of the reconstruction are quite robust to the location, size,
or amplitude of the inclusion. However, the contrast of the reconstruction
appears to be affected in all three cases, and is by far the most difficult
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.32: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(−0.3, 0.3, 1, 0.4). α = 5 · 10−7 and β = 6 · 10−4.

property to determine correctly.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.33: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(−0.3, 0.3, 5, 0.4). α = 2 · 10−5 and β = 6 · 10−4.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.34: Sparsity and TV reconstruction of phantom (cx, cy, C,R) =
(−0.3, 0.3, 10, 0.4). α = 2 · 10−5 and β = 6 · 10−4.
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4.5 Reconstructions of Difficult Inclusions
In this section we will look at more difficult types of inclusions, which
will consist of multiple inclusions in different shapes and with different
amplitude to see if the method is able to separate the inclusions. There is
also an example of a ring-type inclusion which is donut-shaped, as holes in
the inclusions can be very difficult to reconstruct [9].

Multiple Inclusions

The first case of multiple inclusions is depicted in Figure 4.35a with two
circular inclusion and an ellipse. The small inclusion has an amplitude of
3, the larger circular inclusion has an amplitude of 4, and the ellipse an
amplitude of 2.5, and as usual the background conductivity is σ0 = 1.

(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.35: Sparsity and TV reconstruction of multiple inclusions. α =
10−6 and β = 6 · 10−4.

From Figure 4.35 it is seen that both sparsity and TV regularization have
great difficulty in determining the correct contrast, and they both want
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the ellipse inclusion to have the largest amplitude most likely due to it
being the inclusion with the largest support. It is also evident that TV
regularization has difficulty in separating the inclusions, which is not the
case for sparsity where there is a clear separation. It should also be noted
that it was necessary to reduce the parameter α to 10−6 to get a proper
result for sparsity regularization.

In Figure 4.35 we saw multiple inclusions, however, they are all positive
inclusions so it may also be interesting to see what happens if there is a
sign change. In Figure 4.36a we have two circular inclusions, the one on
the left has a contrast of −2 while the one on the right has a contrast of
2. Since we can not allow the conductivity to be negative, a background
conductivity of σ0 = 5 has been used.

(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.36: Sparsity and TV reconstruction of multiple inclusions. α =
10−7 and β = 10−4.

In Figure 4.36 it is evident that both methods determines the sign of the
inclusions correctly, and both methods separates the inclusions, though TV
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regularization leads to a much too large support. The most interesting ob-
servation is probably that both methods favour the negative inclusion in
terms of contrast. Sparsity regularization almost reconstructs the contrast
for the negative inclusion perfectly while it hardly reconstructs the contrast
of the positive inclusion. It should also be noted that both of the regular-
ization parameters had to be reduced significantly to give proper results,
and it seems that both methods have difficulty in dealing with multiple
inclusions when these inclusions have different amplitudes.

In Jin et al. [9] they also looked at inclusions with different signs, however,
they used a much smaller amplitude for the negative inclusion (only 0.5), in
order to also be able to reconstruct a small positive inclusion. There is no
immediate indication from the theory for the method of why the negative
inclusion should be favoured, but we also saw in Figure 4.35 on page 94
that some inclusions are favoured over the others for no apparent reason.
While beyond the scope of this thesis, it is definitely a subject that is worth
investigating further in the future.

Ring-Type Inclusion

The following test was conducted because a similar test was found in Jin
et al. [9], where it was quite evident that ring-shaped (donut-shaped) con-
ductivities are very difficult to reconstruct, mainly because of the hole in
the inclusion.

In Figure 4.37 on the facing page we see sparsity and TV reconstructions
of such a ring inclusion, and the most glaring observation is probably that
TV regularization is not able to reconstruct the hole at all, but acts as if
the inclusion is solid, and changing the regularization parameter did not
improve the result. The same was actually the case with sparsity regular-
ization for the usual α = 2 ·10−5, but reducing the parameter to α = 10−6 it
actually reconstructs the hole, and in general it reconstructs the ring-shape
quite well. In Jin et al. [9] the reconstruction had the hole but the shape
was not quite as circular as in Figure 4.37b on the next page. In both cases
we see that the contrast is best reconstructed near the boundary, which has
already been discussed in the previous tests.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.37: Sparsity and TV reconstruction of ring-type inclusion. α =
10−6 and β = 6 · 10−4.

4.6 Reconstructions of Smooth Inclusions

Until now we have only investigated reconstructions of phantoms that are
piecewise constant, and we have seen that in general the reconstructions
have been quite smooth. Therefore it could be interesting to see if a
smoother phantom will lead to better reconstructions. Most regularization
techniques are better at reconstructing smooth solutions, and has difficulty
in reconstructing discontinuities, however, both sparsity and TV regulariza-
tion does not favour smooth solutions over discontinuous solutions and in
particular TV regularization actually prefers discontinuous solutions over
general smooth solutions. So intuitively we should actually expect that
sparsity and TV regularization perform worse for smooth solutions.

The different inclusions in the previous tests consists of disks, ellipses, and
a ring, all of which are determined by a centre and a parameter r which is
the radius for the circular inclusions, similarly the ellipse is just a circle that
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has been scaled in one or both directions. So the usual piecewise constant
inclusions can be converted into smoother inclusions by a smooth transition
from some amplitude C down to 0 that depends on r, i.e. the distance from
the centre of the inclusion. Thus we can determine a polynomial Q in r such
that Q(a) = C for the amplitude C of the inclusion and Q(b) = 0 to make
the transition in the range r ∈ [a, b]. Since we know that the inclusions
used are constant outside the transition, their derivatives should be zero,
i.e. Q(q)(a) = Q(q)(b) = 0 for q = 1, . . . , D for D continuous derivatives,

Q(a) = C,

Q(b) = 0,

Q(q)(a) = 0, q = 1, . . . , D,

Q(q)(b) = 0, q = 1, . . . , D.

(4.5)

This leads to 2D+ 2 constraints which means that 2D+ 2 coefficients or a
2D+1 order polynomial can be determined uniquely via the linear system of
equations (4.5). In Figure 4.38 I have shown such a polynomial for D = 5.

a b

0

C

Figure 4.38: 11th order polynomial solving (4.5) for D = 5.

In Figure 4.40 on page 100 the usual non-smoothed phantoms can be seen
along with their smoothed version, also using D = 5 for the transitions.
Because the transitions increase the support, I have taken the liberty to
decrease the size of the smoothed phantoms slightly.
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The actual smoothing may be a little easier to see in 3D, so an example
with the multiple inclusion is shown in Figure 4.39.

Figure 4.39: Discontinuous and smoothed versions of phantom with mul-
tiple inclusions.

Now reconstructions are done based on the smooth phantoms in Figure 4.40
on the next page, and the results can be seen in Figure 4.41 on page 101,
where in general the reconstructions are very similar to those of the non-
smoothed phantoms (see Figure 4.33 on page 92, Figure 4.35 on page 94, and
Figure 4.37 on page 97 for the non-smoothed reconstructions). As explained
in the beginning of this section it is not surprising to see that the methods
perform slightly worse for smooth solutions. Especially the reconstruction of
the ring-inclusion is much worse, and the hole in the sparsity reconstruction
in Figure 4.41e is barely visibly (even after fine tuning the regularization
parameter).
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Figure 4.40: Discontinuous and smoothed versions of phantoms.



4.6. Reconstructions of Smooth Inclusions 101

(a) Sparsity, α = 2 · 10−5. (b) TV, β = 6 · 10−4.

(c) Sparsity, α = 10−6. (d) TV, β = 6 · 10−4.

(e) Sparsity, α = 3.5 · 10−5. (f) TV, β = 6 · 10−4.

Figure 4.41: Sparsity and TV reconstructions for smoothed phantoms in
Figure 4.40 on the preceding page.
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4.7 Reconstructions on a Non-Uniform Mesh
In the previous tests a very uniform mesh has been used, so now we shall see
how well sparsity and TV regularization performs on a very non-uniform
mesh. The reason for doing this, is because it may be useful to know if you
can modify the method such that you start out with a very coarse mesh, and
as you approximate your inclusion you refine your mesh near the inclusion,
such that you have a fine mesh at the inclusion and a coarse mesh outside
the support of the inclusion. It is an idea to reduce the computational
workload by only focusing on the area with the inclusion.

So first off, we need a non-uniform mesh, and I have constructed such a
mesh in Gmsh [32] as can be seen in Figure 4.42, where the mesh is very
coarse in the top left part of the domain while it is more like the usual
uniform mesh towards the bottom right part of the domain. It is also seen
that the boundary of the mesh is non-uniformly distributed, which means
that this will give only few nodal points where the data is given in the top
left.

(a) Uniform mesh. (b) Non-uniform mesh.

Figure 4.42: The usual uniform mesh along with the non-uniform mesh.

The reconstructions on the non-uniform mesh can be seen in Figure 4.43
through 4.45 on pages 103–105, and it is evident that TV regularization
performs very well on the non-uniform mesh, and of course slightly better in
Figure 4.45c where the mesh is finer. However, the reconstruction in Figure
4.43c is actually quite good considering how coarse the mesh is. The sparsity
regularization is not performing very well, no matter where the inclusion is
positioned, and the solution is in general quite grainy. The graininess in the
sparsity solution is due to the different sizes of the triangles, as the penalty
term leads to a normalization from the FEM-basis functions in Theorem 4.1,
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so the different FEM-basis functions will be penalized differently depending
on the size of the elements.

(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.43: Sparsity and TV reconstruction on non-uniform mesh. α =
10−6 and β = 6 · 10−4.

So for further research into these methods, a method that adaptively refines
the mesh near the inclusion should probably not be applied to sparsity
regularization, unless one finds a way to straighten out the solution on such
a mesh. TV regularization, however, seems very well fitted for adaptively
changing the mesh, and since the TV-regularization tends to use far more
iterations than sparsity regularization, it may be a good idea in order to
speed up the computations.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.44: Sparsity and TV reconstruction on non-uniform mesh. α =
10−6 and β = 6 · 10−4.
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(a) Phantom. (b) Sparsity.

(c) TV.

Figure 4.45: Sparsity and TV reconstruction on non-uniform mesh. α =
10−6 and β = 6 · 10−4.
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4.8 Reconstructions Based on
Partial/Incomplete Data

Now we shall investigate the use of partial data, which means that we are
only able to measure data on part of the boundary Γ ⊂ ∂Ω. This is very
relevant in practice, for instance in 3D medical imaging, since it is not very
practical to cover the entire patient with electrodes. Instead the electrodes
are for instance placed on the chest (i.e. for imaging the lungs), which
means that there is no data available in the cross-section of the body.

It was shown in (3.20) how the method is implemented to solve problems
using partial data, so it is assumed that Γ is known and that the Neumann-
data has support on Γ. The implementation can make use of any Γ ⊂ ∂Ω.
As Ω is the unit disk, then for the sake of this test we can simplify the
problem by letting Γ be determined by the circular arc with polar angle
θ ∈ [θ1, θ2], 0 < θ1 < θ2 < 2π. The corresponding Neumann-data that
will be used, are scaled and translated versions of (4.3) to ensure that the
Neumann-data have support in [θ1, θ2] while maintaining N oscillations:

gN := χ[θ1,θ2](θ) cos

(
2π

θ2 − θ1

N(θ − θ1)

)
,

g̃N := χ[θ1,θ2](θ) sin

(
2π

θ2 − θ1

N(θ − θ1)

)
.

(4.6)

Where the term χ[θ1,θ2](θ) is a characteristic function on [θ1, θ2]. By the
definition in (4.6) then it becomes equal to (4.3) for θ1 = 0 and θ2 = 2π. It
also satisfies the condition that

∫
∂Ω
gds = 0.

From Figure 4.46 on the next page it is evident that even though the
Neumann-data is supported on [θ1, θ2], this is generally not the case for
the Dirichlet-data φ. Therefore there will be two different cases in the fol-
lowing tests, namely, using the complete data φ and the truncated data
φ̂ := χ[θ1,θ2]φ which is the more realistic case, i.e. that we only measure the
Dirichlet-data on [θ1, θ2] where we know the Neumann-data.

There will be two types of tests in this section, one looking at reconstruc-
tions with varying size of the interval [θ1, θ2] determining Γ, and another
where Γ is fixed and the location of the inclusion varies.



4.8. Reconstructions Based on Partial/Incomplete Data 107

0 1 2 3 4 5 6
θ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
g1

g̃1

(a) g1 and g̃1.
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(b) Corresponding φ.

Figure 4.46: Neumann-data g1 and g̃1 along with corresponding Dirichlet
data (no perturbations), with [θ1, θ2] = [π

2
, π]. The phantom

used is from Figure 4.47.

Size of Γ

Here the size of the interval [θ1, θ2] that determines Γ will be varied, and
we shall try to reconstruct the inclusion in Figure 4.47. In Figure 4.48 on
the next page is an illustration of the three cases of Γ considered here.

Figure 4.47: Phantom.

In Figure 4.49 on the following page the results are found using Γ in Fig-
ure 4.48a on the next page. It is evident that the shape of the inclusion
is not reconstructed as well, as when (4.3) are used for the Neumann-data,
and not surprisingly the reconstruction using the complete data φ yields
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(a) [θ1, θ2] = [0, π]. (b) [θ1, θ2] = [π2 , π]. (c) [θ1, θ2] = [2π3 ,
5π
6 ].

Figure 4.48: Illustration of the location of Γ in three cases.

better reconstructions than the incomplete data φ̂ in terms of the contrast.
But with Γ being half of ∂Ω the results do not differ that much whether
full or partial Dirichlet-data are used. The most significant change is that
the shapes of the inclusions are not reconstructed as well when only partial
Neumann-data is applied.

(a) Sparsity using φ, α = 5 · 10−6. (b) Sparsity using φ̂, α = 5 · 10−6.

(c) TV using φ, β = 5 · 10−6. (d) TV using φ̂, β = 5 · 10−6.

Figure 4.49: Sparsity and TV reconstruction with full data φ and partial
data φ̂, using the partial Neumann-data in (4.6), where Γ is
given in Figure 4.48a.
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In Figure 4.50 we see the result using Γ in Figure 4.48b on the preceding
page, and the shape of the inclusion is further warped. It is seen that the
part of the inclusion farthest away from Γ is reconstructed much worse than
for full Neumann-data, and it is also that part of the inclusion where the
shape is warped the most. Intuitively this is what we could expect from
only using data on part of the boundary, namely, that the reconstruction
is better for the part of the inclusion which is closest to the data. These
results are further emphasized in Figure 4.51 on the following page where
Γ now is given by Figure 4.48c on the preceding page and is indeed very
small. Here it is very evident that using the partial Dirichlet-data φ̂ gives
much worse results, and from Figure 4.51b that the reconstructed support
is much too small.

(a) Sparsity using φ, α = 10−7. (b) Sparsity using φ̂, α = 10−7.

(c) TV using φ, β = 10−6. (d) TV using φ̂, β = 10−6.

Figure 4.50: Sparsity and TV reconstruction with full data φ and partial
data φ̂, using the partial Neumann-data in (4.6), where Γ is
given in Figure 4.48b on the preceding page.

In general TV regularization is not performing very well with partial Neu-
mann-data, and the support is vastly overestimated. Sparsity regularization
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is performing much better in terms of finding the support as well as deter-
mining the contrast quite well considering the lack of data, even for partial
Dirichlet-data φ̂, except in Figure 4.51b. It is also noticed that the regu-
larization parameters have to be reduced along with Γ becoming smaller,
since the discrepancy term consists of an integral over a smaller domain,
and the balance between the discrepancy term and the penalty term needs
to be evened out.

(a) Sparsity using φ, α = 5 · 10−8. (b) Sparsity using φ̂, α = 5 · 10−8.

(c) TV using φ, β = 10−6. (d) TV using φ̂, β = 10−6.

Figure 4.51: Sparsity and TV reconstruction with full data φ and partial
data φ̂, using the partial Neumann-data in (4.6), where Γ is
given in Figure 4.48c on page 108.
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Position of the Inclusion

Here we will use a fixed Γ as shown in Figure 4.48b on page 108, and
reconstruct inclusions given by the three cases in Figure 4.52.

(a) Case 1. (b) Case 2. (c) Case 3.

Figure 4.52: Phantoms in three cases.

From Figure 4.53 through 4.55 on pages 112–114 reconstruction are done
using the phantoms in Figure 4.52. Intuitively, the reconstructions are
better the closer they are to the Neumann-data, and that is certainly also
the case. However, when applying the full Dirichlet-data φ to the sparsity
regularization, we see that the reconstructions actually approximate the
support quite well (when considering the limited data), even in Figure 4.54
and Figure 4.55.

When only using the partial Dirichlet-data φ̂, the quality of the reconstruc-
tions rapidly decay as the inclusion is moved away from Γ. In Figure 4.55b
and Figure 4.55d we see that these solutions do not at all resemble the
sought inclusion, and there are even some artefacts at the boundary of Γ as
a result of the discontinuities in the Neumann-data via g̃N (see Figure 4.46
on page 107).

Thus we can conclude that in general TV regularization is less favoured
when it comes to the use of partial Neumann-data, even when full Dirichlet-
data is applied. Sparsity regularization performs quite well for partial
Neumann-data and to some degree also when partial Dirichlet-data are ap-
plied, however, in that case it should only be used to reconstruct inclusions
near Γ.
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(a) Sparsity using φ, α = 10−7. (b) Sparsity using φ̂, α = 10−7.

(c) TV using φ, β = 10−5. (d) TV using φ̂, β = 10−5.

Figure 4.53: Sparsity and TV reconstruction of the inclusion in Fig-
ure 4.52a on the previous page with full data φ and partial
data φ̂ using the partial Neumann-data in (4.6), where Γ is
given in Figure 4.48b on page 108.
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(a) Sparsity using φ, α = 7 · 10−8. (b) Sparsity using φ̂, α = 1 · 10−8.

(c) TV using φ, β = 10−5. (d) TV using φ̂, β = 10−5.

Figure 4.54: Sparsity and TV reconstruction of the inclusion in Fig-
ure 4.52b on page 111 with full data φ and partial data φ̂
using the partial Neumann-data in (4.6), where Γ is given in
Figure 4.48b on page 108.
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(a) Sparsity using φ, α = 7 · 10−8. (b) Sparsity using φ̂, α = 1 · 10−8.

(c) TV using φ, β = 10−5. (d) TV using φ̂, β = 10−5.

Figure 4.55: Sparsity and TV reconstruction of the inclusion in Fig-
ure 4.52c on page 111 with full data φ and partial data φ̂
using the partial Neumann-data in (4.6), where Γ is given in
Figure 4.48b on page 108.
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4.9 Reconstructions Based on Prior
Information

The title of this section is a bit misleading, since all the reconstructions
performed so far are based on prior information about the solution. This
is in the form of the bias that is introduced in the regularization, which for
sparsity regularization is that the solution is sparse in the chosen basis, and
for TV regularization that the solution is approximately piecewise constant.
Even the use of the Sobolev gradient ∇sJ(σ) (Corollary 3.5) uses the prior
information that the inclusion is zero on the boundary of the domain.

What is meant by the title of this section is the use of prior information
regarding the distinct basis functions used in sparsity regularization. In-
stead of using the same regularization parameter αk := α, ∀k, we will now
scale the parameters for the basis functions based on prior information that
they are included in the basis expansion of the solution. One can scale each
basis function individually based on the precision of the prior information,
however, I make a simple case where

αk := µkα. (4.7)

Here α is a parameter similar to what has been used so far, and for basis
functions with no prior information µk := 1, i.e. they are penalized in the
usual way. But for basis functions where I have prior information, I will use
µk ∈ [0, 1) and thereby penalize these basis functions less, thus encouraging
the method to include them in the solution.

Since I use the FEM basis with the sparsity regularization, prior information
on the FEM basis functions corresponds to prior information on the support
of the inclusions (since each FEM basis function determines the support
near each nodal point). Thereby we can help the method by indicating
where the inclusion should be located, and the main goal is to be able to
get a very precise reconstruction of the contrast and hopefully also some
sharper edges in the reconstruction. Here it should be stressed that without
the use of prior information it is currently hopeless to get sharp edges in
EIT reconstruction.

There will be three different types of tests in this section, firstly we shall
look at the use of exact prior information of the support of the inclusions,
secondly we investigate the results when incomplete or completely false
prior information is applied. The third test will concern an idea I got dur-



116 4. Numerical Experiments Using the Finite Element Method

ing the tests, where I used TV regularization to approximate the support
of inclusions, and use this information as prior information in sparsity reg-
ularization.

Exact Prior Information

In the previous tests I have used phantoms, that can be applied to any grid.
However, to more easily see the result of the prior information that is applied
for the sparsity regularization, I instead show the phantoms projected onto
the coarse grid which is used in the iterative algorithm. For this reason the
true solution will be more jagged near the boundary of the inclusion due to
the size of the triangles in the mesh. Because it can be hard to determine
how well the edges in the reconstruction are determined, I have also included
plots of the difference between the true solutions and the reconstructions.

From Figure 4.57 on the next page and Figure 4.58 on page 118 we see the
same prior information used, but where the scaling of the prior information
in Figure 4.57 is µk = 10−2 and in Figure 4.58 it is µk = 0.5. Evidently
these results supports the intuition that a smaller penalty leads to a stronger
enforcement of the prior information. Furthermore, we see that the contrast
and support along with sharp edges are almost exactly reconstructed in
Figure 4.57.
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(b) Absolute L2 error.

Figure 4.56: Errors at different iterations, with and without the use of
prior information on the support for the case in Figure 4.57
on the facing page.

It is also evident from Figure 4.56 that using the exact prior information
for the support of the inclusion leads to a much faster convergence. The
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.57: Sparsity reconstruction using exact prior information. µk =
10−2 for prior information, and α = 2 · 10−5.

methods do, however, keep going for quite a lot of iterations after the initial
convergence, without too much improvement.

In Figure 4.59 on page 119 reconstruction with partial data close to Γ is
seen to also be reconstructed very successfully. However, in Figure 4.60 on
page 120 it is also seen that even exact prior information for the support
can not remedy the use of partial data when the inclusion is not close to
Γ, and it seems like there is not much that can be done to further improve
that case.

We saw in Section 4.5 on page 94 how difficult multiple inclusions with
different amplitudes and ring-type inclusion are to reconstruct, so it is very
satisfying to see how well they can be reconstructed using prior information
in Figure 4.61 through 4.63 on pages 121–123. The support is correctly
determined and the contrast is quite close, and correctly distributed in the
cases with multiple inclusions. It is still a little hard to reconstruct the
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.58: Sparsity reconstruction using exact prior information. µk =
0.5 for prior information, and α = 2 · 10−5.

correct contrast for the ring-type inclusion, however, it is vastly improved.

Finally I have tried to use prior information on the non-uniform mesh in
Figure 4.64 on page 124, and while it does remove some of the grain from
the solution compared to Figure 4.43b on page 103, it is still not desirable
to properly use this algorithm on a non-uniform mesh when considering
that the exact support is known.

Comparing with the previous tests, it is quite evident how powerful prior
information can be in determining better solutions. However, in this case
exact prior information was applied, and it is rare that we in practice know
precisely where the support of an inclusion is located.
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.59: Sparsity reconstruction for partial Neumann- and Dirichlet-
data corresponding with Figure 4.53b on page 112. Exact
prior information is applied. µk = 10−2 for prior information,
and α = 10−7.
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.60: Sparsity reconstruction for partial Neumann- and Dirichlet-
data corresponding with Figure 4.54b on page 113. Exact
prior information is applied. µk = 10−2 for prior information,
and α = 10−8.
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.61: Sparsity reconstruction using exact prior information. µk =
10−2 for prior information, and α = 10−6.
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.62: Sparsity reconstruction using exact prior information. µk =
10−2 for prior information, and α = 10−6.
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(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.63: Sparsity reconstruction using exact prior information. µk =
10−2 for prior information, and α = 10−7.



124 4. Numerical Experiments Using the Finite Element Method

(a) True solution. (b) Reconstruction.

(c) Difference.

Figure 4.64: Sparsity reconstruction on a non-uniform mesh correspond-
ing with Figure 4.43b on page 103. Exact prior information
is applied. µk = 10−2 for prior information, and α = 10−6.
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Incomplete or False Prior Information

Now let’s investigate some cases where the applied prior information is
either partially correct or false. To illustrate the applied prior information,
I have marked an outline with a green color on the plots of the phantoms in
the following figures, and everything contained within this outline (including
the width of the outline itself) is assumed to be the support of the inclusion.

From Figure 4.65 it is quite evident that even though the prior information
that is given is correct, i.e. the inclusion is non-zero in the given location,
the reconstruction is characterized with only having an inclusion where the
prior information is given, furthermore, the contrast is exceptionally large
in the reconstruction. To give an intuitive explanation of this phenomenon,
we can refer to Section 2.1 on page 14 where we saw for the concentric case
that smaller support and larger contrast can give similar Dirichlet-data
as larger support and smaller contrast. The bias introduced by the prior
information for the too small support may have lead to a local minimum in
the objective function where the Dirichlet-data is sufficiently similar using
the small support and the large contrast.

(a) Phantom and prior outline. (b) Reconstruction.

Figure 4.65: Sparsity regularization using prior information with correct
centre, but too small support. µk = 10−2 for prior informa-
tion, and α = 2 · 10−5.

In Figure 4.66 on the next page we see that assuming that the support is
larger than it really is, we actually get a reconstruction very similar to what
we got without the explicit use of prior information on the support. The
contrast is better reconstructed than without the explicit prior information,
but otherwise not much of an improvement. It is also evident, that in this
case we do not see the prior information being enforced as heavily as in
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Figure 4.65, since the support is not reconstructed larger than the actual
phantom, and we again get the smoother transition near the boundary of
the inclusion as we saw in earlier tests.

(a) Phantom and prior outline. (b) Reconstruction.

Figure 4.66: Sparsity regularization using prior information with correct
centre, but too large support. µk = 10−2 for prior informa-
tion, and α = 2 · 10−5.

For Figure 4.67 on the facing page and Figure 4.68 on page 128 the size
of the support is correct, however, the centre of the inclusion is assumed
to be shifted. In both cases we see a much too larger contrast, and the
contrast is largest in the direction of where the true inclusion is supposed
to be. In Figure 4.67 there is an overlap between the prior information and
the phantom, and it is also evident that the majority of the reconstructed
inclusion lies in this overlap.

For Figure 4.68b there is a small inclusion where the true inclusion is sup-
posed to be, but the prior information is applied even if it is completely
false and the main part of the reconstruction lies where the prior informa-
tion was prescribed, however, with the contrast pointing in the direction of
the true phantom. Increasing the scaling µk to 0.5 for the prior informa-
tion in Figure 4.68c on page 128 improves the result slightly, but increasing
µk to 0.9 for the prior information gives a much better result, as seen in
Figure 4.68d on page 128. This again follows the intuition that the prior
information is enforced according to how low the scaling µk is.

Thus it can be concluded that the use of prior information in this way
can be extremely powerful in determining a better solution that also has
sharp edges reconstructed. However, if the prior information is incorrect,
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(a) Phantom and prior outline. (b) Reconstruction.

Figure 4.67: Sparsity regularization using prior information with correct
size of inclusion, but with wrong centre, and with overlap
between phantom and prior information. µk = 10−2 for prior
information, and α = 2 · 10−5.

the method tends to apply the prior information anyway, which can lead
to worse reconstructions compared to when no prior information on the
support is used. Therefore using prior information in this way, one should
probably always also make a reconstruction with no prior information on
the support as a sanity check of whether the result makes sense. Further-
more, estimating the support slightly larger yields much better results than
estimating the support too small, and it can be used without too much
risk. Finally, we should always scale the prior information according to the
correctness of the prior information, i.e. for well-determined prior informa-
tion we can allow a small µk to enforce the prior information, while prior
information with only doubtful precision we should have µk close to 1 to
avoid the above cases.

We may also observe that using false prior information can lead to situation
where many iterations are used, and sometimes many very small step sizes
are applied as seen in Figure 4.69 on page 129.
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(a) Phantom and prior outline. (b) µk = 10−2 for prior information.

(c) µk = 0.5 for prior information. (d) µk = 0.9 for prior information.

Figure 4.68: Sparsity regularization using prior information with correct
size of inclusion, but with wrong centre, and with no overlap
between phantom and prior information. α = 2 · 10−5.
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Figure 4.69: Step sizes in the iterations for the above four tests compared
to a similar reconstruction using no prior information on the
support.
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Combining TV and Sparsity Regularization

As we saw in the previous tests on the use of false prior information, a
slightly larger support is preferable to a too small support in the applied
prior information. We have also seen how TV regularization in many cases
estimates the support of the inclusions quite well, yet lacks the contrast
from sparsity regularization. Therefore I got the idea of making a simple
experiment by estimating the support using TV regularization and use this
as prior information in the sparsity regularization. In this way we actually
do not make use of any explicit assumptions on the location of the support,
because this information is gained from the TV regularization.

To get the prior information from the TV reconstruction σTV, I have used
the cases with positive inclusions, and given a parameter ξ ∈ (0, 1) then the
prior information in terms of µk is approximated by:

µk :=

{
1, σTV(xk) ≤ ξ‖σTV‖L∞(Ω),

10−2, σTV(xk) > ξ‖σTV‖L∞(Ω),
(4.8)

where {xk} are the nodal points. This means that large values in the
reconstruction from TV regularization leads to a penalty with αk = 10−2α,
while small values in the TV reconstructions leads to the usual penalization
αk = α.

In Figure 4.70 on the next page we see the usual sparsity and TV solutions
along with the prior information extracted from TV regularization, and fi-
nally the solution using the prior information. The result first of all has
sharp edges and the support is quite well reconstructed, and the contrast
is quite well reconstructed as well except at the bottom right part of the
inclusion where the contrast was overestimated. In this way we have actu-
ally achieved a better reconstruction, without actually having more initial
information about the solution.

Figure 4.71 on page 132 shows the case with multiple inclusions, and first
of all it is noticed that the smallest inclusion is not determined well with
the TV regularization. From the final reconstruction using the prior infor-
mation from the TV reconstruction, it is observed that the two inclusion
found by TV regularization are reconstructed quite well and with sharp
edges and a better distribution of the contrast compared to the usual spar-
sity reconstruction. The small inclusion that was undetectable by the TV
reconstruction was of course not as well reconstructed since no prior infor-
mation was applied at that location. However, there is still an inclusion
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(a) True solution. (b) sparsity.

(c) TV. (d) Prior info from TV with ξ = 0.65.

(e) Sparsity with prior from TV.

Figure 4.70: Sparsity regularization using prior information on the sup-
port of the inclusion based on TV reconstruction. α =
2 · 10−5.

reconstructed but it is not as good as the usual sparsity reconstruction. So
in this case we get a trade off in this sense of getting better reconstruc-
tions of the two larger inclusions and a worse reconstruction of the small
inclusion.
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(a) True solution. (b) sparsity.

(c) TV. (d) Prior info from TV with ξ = 0.5.

(e) Sparsity with prior from TV.

Figure 4.71: Sparsity regularization using prior information on the sup-
port of the inclusion based on TV reconstruction. α = 10−6.

One could consider maybe using both sparsity and TV regularization to get
an idea of the support of the inclusions, which would also include the small
inclusion in this case. One may also look into a more sophisticated way of
attaining the prior information from the TV reconstruction rather than a
simple threshold.
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It should also be noted that there are likely better and faster methods than
TV regularization to get an estimate of the support of an inclusion.
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Discussion

In this chapter there will be a short discussion on ideas and further inter-
esting ways one could continue investigating these methods beyond what
was presented in this thesis.

The first subject I would like to discuss is the use of a different basis than the
FEM basis, because as seen in Theorem 3.12, we could use any orthogonal
basis for H1

0 (Ω) (orthogonal in the H1-metric). So the question is what
kinds of properties that can be extracted by having a sparse representation
from a different basis. Take for instance a wavelet basis for L2(Ω) for
which we could emphasize the small scales of the solution, and in that way
emphasize discontinuities. Though it is not completely clear if there are
similar orthonormal bases for H1

0 (Ω).

When speaking of promoting discontinuities in the solution, then TV seemed
like a good candidate, however, as we have seen in Chapter 4 the contrast is
severely reduced by the bias introduced from the regularization. An inter-
esting idea would be to combine sparsity and TV regularization, such that
we had the objective function

ψ(δσ) := J(σ0 + δσ) +Rα,1(δσ) + βPTV,c(δσ).

Hopefully, the sparsity regularization could help the TV regularization ob-
tain the correct contrast, and that TV regularization could help the sparsity
regularization near the boundary of the inclusion, such that we get a piece-
wise constant inclusion with the correct contrast. However, it may also turn
out that the two regularization techniques hopelessly counter each other,
and due to multiple bias for the different regularizations we get something
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worse than either sparsity or TV regularization alone, something that is
simply too difficult to predict without actually trying it out.

Another interesting idea, would be whether the sparsity regularization pa-
rameters could be changed adaptively, i.e. that in each iteration we could
change the parameters based on how the current iterate looks, and for in-
stance emphasize the nodes where the iterate has larger values. In that
way we could automatically approximate the support of the solution with-
out explicitly giving prior information about the location of the support.
This leads to several questions, where probably the most important one is
whether the problem is even well-defined, since now we deal with an opti-
mization problem where the objective function changes in each iteration,
and is this even possible to solve? It would definitely put a stop to the
use of the weak monotonicity in its current form (Definition 3.7) because
we would no longer be able to compare the objective function between dif-
ferent iterations. Instead this may be achieved by saving the most recent
iterates {δσk}ik=i−M+1, and then compare with the new objective function
Ψi computed for the previous iterates:

Ψi(δσi+1) ≤ max
i−M+1≤j≤i

Ψi(δσj)−
τ

2si
‖δσi+1 − δσi‖2

H1(Ω).

Another way to get an adaptive method would be to start out with a very
coarse mesh and then refine it in each iteration near where the inclusion is
non-zero, such that we in the end get a very fine mesh near the support of the
inclusion, and a coarse mesh where the inclusion is zero. This is actually
a well understood technique that has been used in other applications to
for instance speed up computationally tough problems. However, in this
particular problem we again arrive at the notion that we have to change
the regularization parameter in each iteration, since the sparsity penalty
term depends a lot on the discretization and how many nodes that are
present in the mesh. So in this case we would also have to solve the issues
with changing the objective function in each iteration. Furthermore, as seen
in Section 4.7 on page 102 sparsity regularization performs very poorly on
non-uniform mesh, so adaptively refining the mesh locally is probably not a
good idea in the method’s current state. However, for TV regularization it
was evident in Section 4.7 that it performs quite well on non-uniform mesh,
and there will not be problems with the regularization parameter if the
mesh is altered. TV regularization also tends to use far more iterations than
sparsity regularization, so reducing the computational burden by initially
using a coarse mesh could significantly improve the speed of the method.
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The above discussions leads to a new subject, namely, how we can generalize
the sparsity regularization parameter such that a good choice of a parameter
on one mesh translates to a similarly good parameter on a finer/coarser
mesh. The idea would be to have a specific choice of the parameter, and
then scale it depending on the number of nodes in the mesh or the average
size of the elements. It is a highly undesirable quality of the FEM basis
that the regularization parameters depends so much on the mesh, and not
only on the actual problem. Therefore a good and simple way to generalize
this dependency will greatly help the method become more transparent and
easy to apply. I suppose that it would also help in regards of determining
an automated approach in finding a good regularization parameter.

Now one of the more interesting subjects is the use of prior information to
help solve the problem. My initial idea would be to use a fixed parameter
α for the sparsity regularization when no prior information is known, and
then scale it down depending on the quality of the prior information to
penalize it less, i.e.

αk := µkα.

Here 0 < µk ≤ 1 (and possibly a larger lower bound to avoid getting to close
to 0) will control how the specific basis function should be penalized. For
prior information that is not well-determined we should have µk close to 1
such that it is close to no prior information at all. If the prior information
is very well-determined i.e. we are almost completely sure that the prior
information is true, then we can have µk become close to the lower bound
to penalize the basis function less and therefore promote it in the solution.
Again this very practical approach leads to a very difficult question: How
can we quantify how well-determined prior information is? It surely depends
on what type of prior information we talk about i.e. what basis that is used
in the sparsity regularization. Another question is also to what degree it
actually makes sense to use the prior information, for instance if we aim
to use EIT for medical imaging, then it would be doctors who need to
interpret the reconstructions, and using some prior information may bias
the reconstruction in a way that other important details are less apparent
or completely gone from the reconstruction.

Finally, it should be noted that the use of prior information in the sparsity
regularization can easily be translated to other problems than EIT, as it
simply depends on changing the discrepancy term for the actual problem
and choosing an appropriate basis. While the `1-penalty term is commonly
used, it would be interesting to see some new sparsity based methods using
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interesting bases to promote characteristic properties in otherwise difficult
problems, by applying explicit prior information about the basis functions.
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Conclusion

I have been investigating the results from Jin and Maass [8], Jin et al. [9] in
great detail, and provided several proofs that were omitted in the articles.
I have furthermore been skeptical towards some of the more heuristic argu-
ments in the articles and provided more rigorous arguments that actually
alters the method slightly. In particular in terms of the step size in Corol-
lary 3.6, the normalization that occurs in the sparsity steps in Theorem
3.12, and the entire result of Theorem 4.1 by using the properties of the
FEM basis to derive an approximate solution rather than simply assume
that the FEM basis is orthonormal (and a basis for H1

0 (Ω)), which is far
from the truth.

Many of the results had not been proved and only some were stated in Jin
and Maass [8], Jin et al. [9], including all the results in the first part of
Chapter 2, and all the results in Chapter 3 and Chapter 4. All the results
regarding total variation regularization were done from scratch. As for the
results in Section 2.2 I have greatly expanded on the details of the proofs,
as details were very sparse and it was implied that the reader should fill
out the gaps. I have also expanded on the theory that was presented in Jin
and Maass [8], Jin et al. [9] by generalizing the use of several regularization
parameters in sparsity regularization.

I got the idea of using a regularization parameter for each basis function in
order to apply explicit prior information to include specific basis functions
in the solution. This was in practice applied via the FEM basis to give prior
information on the support of inclusions, and provided correct prior infor-
mation this leads to exceptionally good reconstructions, something that is
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not possible to do with EIT without the use of prior information. I have
also had the idea to combine total variation regularization and sparsity
regularization, thus improving solutions without the use of further prior
information, by simply applying the solution from total variation regular-
ization to determine an approximation to the support for the inclusions.
Furthermore, I have generalized the methods to allow for the use of partial
data, something that in general always will be the case for practical 3D
reconstructions of the human body.

I touched on many advanced topics during the thesis, including weak formu-
lations of PDE’s, Gâteaux and Fréchet derivatives and their use in Taylor
expansions as well as their use in gradient descend methods. I have also
been introduced to sparsity and total variation regularization, and their
respective strengths and weaknesses.

I have also successfully implemented both the sparsity and total variation
regularization for EIT, which includes solving multiple PDE’s numerically.
Furthermore, I have formulated the forward problem via (2.13), such that
it easily can be implemented using the space H1(Ω) instead of H̃1(Ω). The
implementation has been done in the programming language Python us-
ing the software package FEniCS [31], both of which I have had no prior
experience with. It was observed that sparsity regularization does indeed
attempt to find a solution which is sparse in the applied basis, here the
FEM basis. The total variation regularization attempts to find a solution
that is constant at the location of the inclusion, however, it does turn out
that the transition at the boundary of the inclusion is not discontinuous in
the solution but rather smooth. The smooth transition is most likely due
to the use of the smoother gradient via the Sobolev gradient ∇sJ(σ), how-
ever, the use of this gradient also ensured the stability near the boundary,
by enforcing that the solution equals the background conductivity on the
boundary.

I have also programmed many different tests to thoroughly investigate the
properties of the solutions in different scenarios, including different sizes of
inclusions with different amplitudes, and observed how the reconstruction
is affected by the distance of the inclusion to the boundary of the domain.
Using uniform and non-uniform mesh it was observed how badly sparsity
regularization performs on the non-uniform mesh while total variation reg-
ularization is almost indifferent. It was seen that sparsity regularization in
general performs best on reconstructing the contrast, while total variation
regularization performs slightly better for reconstructing the support. For
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partial data it was seen that sparsity regularization performs quite well, as
long as there are data near the inclusion, while total variation regularization
vastly overestimates the support.

For the use of explicit prior information of the support of the inclusions, it
was possible to make near-perfect reconstructions with sparsity regulariza-
tion when exact information was provided. However, it was also seen how
unstable the solution is towards false prior information, and the scaling
of the regularization parameters must therefore in practice be determined
from the precision of the prior information, i.e. how sure we are that the
prior information is correct. By using total variation to determine an ap-
proximation to the support of inclusions in the solution, it was used as prior
information in sparsity regularization, giving a good approximation to the
support in the sparsity solution, but it also improved the contrast of the
solution significantly. I have also discussed the possibility of having both
sparsity and total variation penalty terms in the objective function for the
optimization problem, however, that is beyond the scope of this thesis but
still an interesting idea to maybe be able to simultaneously approximate
the contrast and the support well.





Appendix A

Multi-Index Notation

In many situations in Rd it becomes clumsy to write things out completely,
and a more compact notation such as multi-index can help out. A multi-
index is a d-tuple α = (α1, α2, . . . , αd) where αj ∈ N0 := N ∪ {0}, j =
1, 2, . . . , d. One may write that α ∈ N0

d i.e. the d − 1 Cartesian products
of N0. The following shows how multi-index notation is used:

|α| :=
d∑
j=1

αj, (A.1)

α! :=
d∏
j=1

αj!, (A.2)

xα :=
d∏
j=1

x
αj

j , x ∈ Rn, (A.3)

∂α :=
∂α1

∂xα1

∂α2

∂xα2
. . .

∂αd

∂xαd
. (A.4)

There is also a version of the product rule for differentiation in terms of the
multi-index [21]:

∂α(fg) =
∑

β+γ=α

α!

β!γ!
(∂βf)(∂γg), (A.5)

where β and γ are multi-indices.
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Sobolev Spaces

This chapter will mainly be a set of definitions and results taken from
Adams and Fournier [15], Evans [20], and will be used as reference for the
notation and definitions of many of the spaces in this report, as they are
instrumental in determining the more general weak solutions to a PDE. In
the following it is assumed that Ω is an open subset of Rd.

It should be noted that there is a bijection between a subspace V of the space
of distributions D′(Ω) and the space L1

loc(Ω) of locally integrable functions
[21], given by

〈f, φ〉 :=

∫
Ω

fφdx, φ ∈ C∞c (Ω),

where f on the right hand-side is a function f ∈ L1
loc(Ω) and on the left

hand-side we have the dual pairing of the corresponding distribution f ∈ V
and the test function φ ∈ C∞c (Ω). Due to the identification of the spaces V
and L1

loc(Ω) it is common to use the same symbol for the function and the
corresponding distribution.

Definition B.1 (Weak Derivative) A weak derivative is another name
for the distribution derivative, but for functions in L1

loc(Ω). So the α’th
weak partial derivative of u ∈ L1

loc(Ω) is (if it exists) the unique function
v ∈ L1

loc(Ω) satisfying∫
Ω

u∂αφdx = (−1)|α|
∫

Ω

vφdx, ∀φ ∈ C∞c (Ω),

and we write v = ∂αu.
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It should be noted that such terms as bijection between V and L1
loc(Ω), and

uniqueness of a weak derivative, is up to a set of measure zero. However,
there is no loss of generality in omitting this detail, since the Lp-spaces and
L1

loc(Ω) in reality consists of equivalence classes of functions that are equal
up to a set of measure zero, and writing f ∈ L1

loc(Ω) it is understood that
f ∈ [f ] with [f ] being such an equivalence class.

Definition B.2 (Sobolev Spaces W k,p) The Sobolev spaces are defined
as follows

W k,p(Ω) := {u ∈ Lp(Ω) | ∂αu ∈ Lp(Ω), ∀|α| ≤ k}, k ∈ N0, p ∈ [1,∞].

The W k,p-spaces are often equipped with the following norms for which they
become Banach spaces,

‖u‖W 1,p(Ω) :=



∑
|α|≤k

‖∂αu‖pLp(Ω)

1/p

, p ∈ [1,∞),

∑
|α|≤k

‖∂αu‖L∞(Ω), p =∞.

For p = 2 one usually writes Hk(Ω) := W k,2(Ω) and these spaces are Hilbert
spaces when equipped with the inner product

〈u, v〉Hk(Ω) :=
∑
|α|≤k

〈∂αu, ∂αv〉L2(Ω), u, v ∈ Hk(Ω).

In the case of H1(Ω) where there is no hint of mixed derivatives, one may
write the inner product as

〈u, v〉H1(Ω) = 〈u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω), u, v ∈ H1(Ω),

where 〈∇u,∇v〉L2(Ω) =
∫

Ω
∇u · ∇vdx. One can then write ‖u‖2

H1(Ω) =

‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω).

Definition B.3 (W k,p
0 ) The spaces W k,p

0 (Ω) are defined as the closure of
C∞c (Ω) in the ‖·‖Wk,p(Ω)-norm.

Similarly we write Hk
0 (Ω) := W k,2

0 (Ω).
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Theorem B.4 (Trace Theorem) Assume that Ω is open and bounded
and ∂Ω is C1, then there exists a bounded linear operator T : W 1,p(Ω) →
Lp(∂Ω) such that

(i) Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω).

(ii) ‖Tu‖Lp(∂Ω) ≤ C‖u‖W 1,p(Ω), ∀u ∈ W 1,p(Ω), where C only depends on
p and Ω.

Using the trace theorem the W 1,p
0 (Ω)-spaces can be characterized in the

following way, assuming that Ω satisfies the assumptions.

Theorem B.5 (Characterization of W 1,p
0 ) Assume that Ω is open and

bounded and ∂Ω is C1 then

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) | Tu = 0}.

From Theorem B.4 it is evident that T (W 1,p(Ω)) ⊆ Lp(∂Ω), however, it
turns out that T is not surjective, thus it may be convenient to name the
range of T .

Definition B.6 (W 1/2,p) Assume Ω is open and bounded and ∂Ω is C1,
then W 1/2,k(∂Ω) is defined as

W 1/2,p(∂Ω) := T (W 1,p(Ω)).

A norm on the W 1/2,p(∂Ω) space could for instance be

‖u‖W 1/2,p(∂Ω) := inf{‖v‖W 1,p(Ω) | v ∈ W 1,p(Ω), T v = u}.

Once again we write H1/2(∂Ω) := W 1/2,2(∂Ω).

The continuous duals of the Sobolev spaces are often used when solving
PDE’s for instance when applying the Lax-Milgram theorem (Theorem
C.3), therefore the continuous duals have a special notation.

Definition B.7 The continuous dual spaces of the Sobolev spaces are an-
notated as follows:

W−k,p(Ω) := (W k,p
0 (Ω))′, k ∈ N0,

W−1/2,p(∂Ω) := (W 1/2,p(∂Ω))′.
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As one might expect we write H−k(Ω) := W−k,2(Ω) and H−1/2(∂Ω) :=
W−1/2,2(∂Ω).

B.1 Inequalities and Imbeddings

First let’s define an imbedding.

Definition B.8 (Imbedding) Let X and Y be normed spaces, then we
say that X is imbedded in Y and write X ↪→ Y if the following holds

(i) X is a subspace of Y ,

(ii) the inclusion operator ι : X → Y that maps ιx = x, ∀x ∈ X is
continuous or equivalently (as ι is linear) bounded.

The following version of the Sobolev imbedding theorem is taken from
Adams and Fournier [15]. It should be noted that in Adams and Fournier
[15] a requirement for the Sobolev imbedding theorem is that the domain
Ω satisfies the so called cone condition, however, it is later remarked that if
Ω is bounded then it is sufficient that Ω is a Lipschitz domain. However in
order to stay on topic I have opted to use the less general assumption that
Ω is bounded and has C1 boundary.

Theorem B.9 (Sobolev Imbedding Theorem)
Let Ω be an open bounded domain in Rd with C1 boundary, and let 1 ≤ p <
∞, then the following imbeddings apply.

(i) If k < d
p
then

W k,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ dp/(d− kp).

(ii) If k > d
p
or if k = d and p = 1 then

W k,p(Ω) ↪→ Lq(Ω), p ≤ q ≤ ∞.

(iii) If k = d
p
then

W k,p(Ω) ↪→ Lq(Ω), p ≤ q <∞.
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If W k,p is substituted with W k,p
0 then Ω can be an arbitrary domain in Rd.

The operator norm ‖ι‖ for the inclusion operator only depends on Ω, d, k,
p, and q.

Hölder’s inequality is well-known and can often be quite helpful, however,
the following generalized Hölder’s inequality will prove to be very useful
when investigating the continuity and differentiability of the forward map
for EIT.

Theorem B.10 (Generalized Hölder’s Inequality) Letm ∈ N and r ∈
[1,∞), and let pj ∈ [1,∞], j = 1, 2, . . . ,m such that

m∑
j=1

1

pj
=

1

r
, (B.1)

where 1
pj

is identified with 0 if pj = ∞. For uj ∈ Lpj(Ω), j = 1, 2, . . . ,m

and u :=
∏m

j=1 uj then u ∈ Lr(Ω) and

‖u‖Lr(Ω) ≤
m∏
j=1

‖uj‖Lpj (Ω).

Proof. Firstly the pj’s are ordered such that p1 ≤ p2 ≤ · · · ≤ pm. The
proof will be by induction, and since the case m = 1 is trivial i.e. pm = r,
it is assumed that m ≥ 2. For simplicity the Lp(Ω)-norm is denoted ‖·‖p.

Case 1: pm =∞
Since pm = ∞ then

∑m−1
j=1

1
pj

= 1
r
. Pulling the ess supx∈Ω|um(x)| outside

‖∏m
j=1 uj‖r yields

‖
m∏
j=1

uj‖r ≤ ‖
m−1∏
j=1

uj‖r‖um‖∞ = ‖
m−1∏
j=1

uj‖
1/

(∑m−1
j=1

1
pj

)‖um‖pm . (B.2)

Case 2: pm <∞
Due to the ordering of the pj’s then p1, p2, . . . , pm−1 <∞ so pm > r in order
for (B.1) to hold, i.e. pm ∈ (1,∞). Now define

p :=
pm

pm − r
, q :=

pm
r
.
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So as pm ∈ (1,∞) and pm > r then p, q ∈ (1,∞) and 1
p

+ 1
q

= 1 i.e. the
usual Hölder’s inequality can be applied:

‖|
m∏
j=1

uj|r‖1 = ‖|
m−1∏
j=1

uj|r|um|r‖1 ≤ ‖|
m−1∏
j=1

uj|r‖p‖|um|
r‖q,

thus

‖
m−1∏
j=1

uj‖r ≤ ‖|
m−1∏
j=1

uj|r‖1/r
p ‖|um|

r‖1/r
q = ‖

m−1∏
j=1

uj‖pr‖um‖qr. (B.3)

As qr = pm and as pr = pmr
pm−r = 1/(1

r
− 1

pm
) = 1/(

∑m−1
j=1

1
pj

) then (B.3)
becomes

‖
m−1∏
j=1

uj‖r ≤ ‖
m−1∏
j=1

uj‖
1/

(∑m−1
j=1

1
pj

)‖um‖pm . (B.4)

So in both cases we get (B.2) and (B.4), thus by induction of this equation
m− 1 times yields

‖
m−1∏
j=1

uj‖r ≤ ‖um‖pm‖um−1‖pm−1
. . . ‖u2‖p2

‖u1‖1/(1/p1) =
m∏
j=1

‖uj‖pj , (B.5)

thereby proving the theorem. �

Now we can easily prove the following theorem.

Theorem B.11 Let Ω be bounded, then Lp2(Ω) ↪→ Lp1(Ω) for any 1 ≤
p1 ≤ p2 ≤ ∞, and ‖ι‖ depends only on p1, p2 and Ω.

Proof. The case p1 = p2 is trivial so let p1 < p2 such that p1 ∈ [1,∞)
and p2 ∈ (p1,∞]. Now define p3 ∈ [1,∞) such that 1

p1
= 1

p2
+ 1

p3
. Now let

u ∈ Lp2(Ω) then by Theorem B.10

‖u‖Lp1 (Ω) = ‖u · 1‖Lp1 (Ω) ≤ ‖u‖Lp2 (Ω)‖1‖Lp3 (Ω) = |Ω|1/p3‖u‖Lp2 (Ω) <∞,

where |Ω| is the Lebesgue measure of Ω, which is finite as Ω is bounded. As
u ∈ Lp2(Ω) was arbitrary then Lp2(Ω) ⊆ Lp1(Ω). The inclusion is bounded
with ‖ι‖ ≤ |Ω|1/p3 = |Ω|1/p1−1/p2 , and equality is achieved for u = 1 on Ω,
i.e. ‖ι‖ = |Ω|1/p1−1/p2 . �

Theorem B.12 Let Ω be bounded, then W k,p2(Ω) ↪→ W k,p1(Ω) for any
1 ≤ p1 ≤ p2 ≤ ∞, and ‖ι‖ depends only on k, p1, p2 and Ω.
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Proof. As in the proof of Theorem B.11 the case p1 = p2 is trivial, so
initially assume that p1 < p2 < ∞. Instead of working with the norm
defined in Definition B.2 we introduce the following equivalent norm1,

‖u‖′Wk,p(Ω) =
∑
|α|≤k

‖∂αu‖Lp(Ω), u ∈ W k,p(Ω).

So by use of Theorem B.11 let u ∈ W k,p2(Ω),

‖u‖Wk,p1 (Ω) ≤ C1‖u‖′Wk,p1 (Ω) = C1

∑
|α|≤k

‖∂αu‖Lp1 (Ω) ≤ C1

∑
|α|≤k

Cα‖∂αu‖Lp2 (Ω),

so by letting C2 := C1 max|α|≤k Cα then

‖u‖Wk,p1 (Ω) ≤ C2

∑
|α|≤k

‖∂αu‖Lp2 (Ω) = C2‖u‖′Wk,p2 (Ω) ≤ C3‖u‖Wk,p2 (Ω).

Now consider the case p1 < p2 = ∞, then we can use almost the same
approach as above:

‖u‖Wk,p1 (Ω) ≤ C1

∑
|α|≤k

‖∂αu‖Lp1 (Ω) ≤ C2

∑
|α|≤k

‖∂αu‖L∞(Ω) = C2‖u‖Wk,∞(Ω).

�

The following version of Poincaré’s inequality is not the most common one,
since the term uΩ is usually equal to uΩ = |Ω|−1 ∫

Ω
udx, i.e. the average of

u over Ω, however the following version will be more useful in this report
as we will deal with situations where

∫
∂Ω
Tuds = 0.

Theorem B.13 (Poincaré’s Inequality) Let Ω be a bounded connected
open subset of Rd with ∂Ω being C1. Let p ∈ [1,∞] then there exists a
constant C > 0 depending only on d, p and Ω, such that

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω), ∀u ∈ W 1,p(Ω), (B.6)

where uΩ := |∂Ω|−1 ∫
∂Ω
Tuds.

Proof. Let u ∈ W 1,p(Ω) and let uΩ := |∂Ω|−1 ∫
∂Ω
Tuds. The proof will

be by contradiction, so assume that (B.6) is not true, then there exists a
sequence {uk}k∈N ⊂ W 1,p(Ω) satisfying

‖uk − (uk)Ω‖Lp(Ω) > k‖∇uk‖Lp(Ω), k ∈ N. (B.7)
1en.wikipedia.org/wiki/Sobolev_space
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Now define
vk :=

uk − (uk)Ω

‖uk − (uk)Ω‖Lp(Ω)

.

Then we have ‖vk‖Lp(Ω) = 1, k ∈ N, and

(vk)Ω =
1

‖uk − (uk)Ω‖Lp(Ω)

((uk)Ω − |∂Ω|−1|∂Ω|(uk)Ω) = 0, k ∈ N. (B.8)

Furthermore, by (B.7) then

‖∇vk‖Lp(Ω) =

∥∥∥∥∥∇
(

uk
‖uk − (uk)‖Lp(Ω)

− (uk)Ω

‖uk − (uk)‖Lp(Ω)

)∥∥∥∥∥
Lp(Ω)

=
‖∇uk‖Lp(Ω)

‖uk − (uk)‖Lp(Ω)

<
1

k
, k ∈ N. (B.9)

By the remark on p. 289 in Evans [20] there exists a subsequence {vkj}j∈N ⊆
{vk}k∈N and v ∈ Lp(Ω) such that limj→∞‖vkj−v‖Lp(Ω) = 0, thus ‖v‖Lp(Ω) =

1 and by (B.9) then ‖∇v‖Lp(Ω) = 0, i.e. v ∈ W 1,p(Ω). Thus ∇v = 0 a.e.,
so v = C a.e. for some constant C.

Due to the trace theorem (Theorem B.4) then Tv = C since ṽ := C equals
v almost everywhere. By (B.8) then vΩ = 0 which implies that C = 0 so
v = 0 a.e. which is a contradiction with ‖v‖Lp(Ω) = 1. �
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Various Theorems and Lemmas

The following two identities, also known as Green’s first and second identity,
are part of any introductory PDE book with respect for itself for instance
Asmar [16], Strauss [30] or Evans [20], however, the slightly more general
version presented in Theorem C.2 of the second Green’s identity is usually
shown with ε = 1, however, it is a simple corollary to the divergence theorem
on the field F = ψε∇φ− φε∇ψ.

Theorem C.1 (Green’s First Identity) Let Ω be a connected region in
Rd with outwards pointing normal n, let φ ∈ C2(Ω) and ψ ∈ C1(Ω) then∫

Ω

(ψ∇2φ+∇ψ · ∇φ)dx =

∮
∂Ω

ψ
∂φ

∂n
ds.

Theorem C.2 (Green’s Second Identity) Let Ω be a connected region
in Rd with outwards pointing normal n, let φ, ψ ∈ C2(Ω) and ε ∈ C1(Ω)
then ∫

Ω

[ψ∇ · (ε∇φ)− φ∇ · (ε∇ψ)] dx =

∮
∂Ω

ε

(
ψ
∂φ

∂n
− φ∂ψ

∂n

)
ds.

The following theorem is a fundamental, but very powerful result from
functional analysis.

Theorem C.3 (Lax-Milgram Theorem) Let H be a Hilbert space with
norm ‖·‖, let B : H ×H → R be bilinear, and let L ∈ H ′ (where H ′ is the
continuous dual space of H). Assume that there exists constants C1, C2 > 0
such that
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(i) |B(u, v)| ≤ C1‖u‖‖v‖, ∀u, v ∈ H,

(ii) B(u, u) ≥ C2‖u‖2, ∀u ∈ H.

Then there exists a unique u∗ ∈ H such that

B(u∗, v) = 〈L, v〉, ∀v ∈ H,

where 〈L, v〉 denotes the dual pairing of L and v.

The following definition of Gâteuax and Fréchet derivatives, and the fol-
lowing theorem, are taken from Zorn [14], Griffel [22]1. It is possible to
define higher order Gâteaux and Fréchet derivatives using different direc-
tions, however this will not be applied in this thesis, so the notation is
simplified by using the same direction in every order of the derivatives.

Definition C.4 (Gâteaux and Fréchet Derivatives) Let X and Y be
normed spaces, with U ⊆ X being open and F : X → Y .

(i) F is said to be Gâteaux differentiable at x ∈ U with derivative F ′x :
X → Y , if the following limit exists:

F ′x(η) := lim
ε→0

F (x+ εη)− F (x)

ε
=

d

dε
F (x+ εη)|ε=0, ∀η ∈ X.

A higher order Gâteaux derivative in the direction η can be determined
similarly by

F (n)
x (η) :=

d

dε1
· · · d

dεn
F (x+

n∑
k=1

εkη)|ε1=···=εn=0.

(ii) F is said to be Fréchet differentiable at x ∈ U with derivative F ′x = Lx,
if there exists a bounded linear operator Lx : X → Y such that

lim
‖η‖X→0

‖F (x+ η)− F (x)− Lxη‖Y
‖η‖X

= 0.

1the remainder term for Theorem C.5 is from planetmath.org/encyclopedia/
taylorpolynomialsinbanachspaces.html

planetmath.org/encyclopedia/taylorpolynomialsinbanachspaces.html
planetmath.org/encyclopedia/taylorpolynomialsinbanachspaces.html
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If F is Fréchet differentiable then it is also Gâteaux differentiable, and the
derivatives coincide. The converse is only true if the Gâteaux derivative is
linear and bounded.

Theorem C.5 (Taylor Expansions in Gâteaux Derivatives) Suppose
that F : X → Y with X, Y being Banach spaces, and that F is k times con-
tinuously Gâteaux differentiable. Let U ⊆ X be an open subset such that
x+ tη ∈ U for t ∈ [0, 1], then

F (x+ η) = F (x) + F ′x(η) + · · ·+ 1

(k − 1)!
F (k−1)
x (η) +Rk

x(η),

with the remainder term being

Rk
x(η) =

1

(k − 1)!

∫ 1

0

(1− t)k−1F
(k)
x+tη(η)dt.

Theorem C.6 Let {fj} be a sequence in Lp(X ,E, µ) for some measure
space (X ,E, µ).

(i) If {fj} converges to f ∈ Lp(X ,E, µ) in the Lp-sense, then there is a
subsequence {fjk} which converges pointwise a.e. to f .

(ii) If {fj} converges to g1 ∈ Lp(X ,E, µ) in the Lp-sense, and pointwise
a.e. to g2, then g1 = g2 a.e..





Appendix D

Source Code of
Implementation

This appendix will contain the source code for the implemented algorithms
for solving the inverse EIT problem. The language used is Python and
the main library used is dolfin from the FEniCS project [31]. It should be
noted that in Python the use of backslash \ denotes that the code continues
on the next line, and it is used to make code fit on the page.

D.1 Shared Functions

This section will contain the source code of the file SharedEITFunctions.py,
that contains functions that are shared by the sparsity and TV solvers.

1 """
2 Functions that are shared between the different EIT solvers
3 """
4
5 from dolfin import *
6 import numpy as np
7 import shelve # used to easily load/save stuff from/to files
8
9 """

10 Solves the Forward EIT problem with Neumann condition:
11 -div(sigma*grad(u)) = 0
12 sigma*du/dn = g
13 int trace(u) ds = 0
14
15 Input:
16 Mesh ’mesh’ mesh on which the problem is solved
17 Function ’sigma ’ electrical conductivity
18 Function ’g’ Neumann -data
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19
20 Output:
21 Function ’u’ forward solution
22 """
23 def FSolver(mesh ,sigma ,g):
24 # Define function space
25 V = sigma.function_space ()
26 R = FunctionSpace(mesh , "R", 0)
27 W = V * R
28
29 # Define trial and test functions
30 (u, c) = TrialFunctions(W)
31 (v, d) = TestFunctions(W)
32
33 # Define forms and langrange multipliers
34 LangMult = (c*v + u*d)*ds # forces int u ds = int v ds = 0
35 B = sigma*inner(grad(u), grad(v))*dx + LangMult
36 L = g*v*ds
37
38 # Compute solution
39 w = Function(W)
40 solve(B == L, w)
41 (u, c) = w.split(deepcopy = True)
42
43 return u
44
45
46
47 """
48 Computes the discrepancy gradient \nabla J(sigma)
49
50 Input:
51 Mesh ’mesh’ mesh on which the problem is solved
52 Function ’sigma ’ electrical conductivity
53 Function ’g’ Neumann -data
54 Function ’phi’ Dirichlet -data
55 Function ’F’ forward solution F_g(sigma)
56 Function ’Tg’ threshold function for partial data ,
57 default = Constant (1.0)
58
59 Output:
60 Function ’Jprime ’ gradient of discrepancy
61 """
62 def Jsolver(mesh ,sigma ,g,phi ,F,Tg = Constant (1.0)):
63 # Solve adjoint problem
64 adjointdata = (F-phi)*Tg
65 utilde = FSolver(mesh ,sigma ,adjointdata)
66 Jprime = -inner(grad(utilde),grad(F))
67
68 return Jprime
69
70
71 """
72 Computes the Sobolev gradient \nabla_s J(sigma)
73
74 Input:
75 Mesh ’mesh’ mesh on which the problem is solved
76 Function ’Jprime ’ usual gradient of discrepancy
77



D.1. Shared Functions 159

78 Output:
79 Function ’Js’ sobolev gradient of discrepancy
80 """
81 def Jsobolev(mesh ,Jprime ):
82 # Dirichlet BC
83 V = FunctionSpace(mesh ,"CG" ,1)
84 def Js_boundary(x, on_boundary ):
85 return on_boundary
86
87 bc = DirichletBC(V,Constant (0.0) , Js_boundary)
88 # Define variational problem
89 Js = TrialFunction(V)
90 v = TestFunction(V)
91 B = inner(grad(Js),grad(v))*dx + Js*v*dx
92 L = Jprime*v*dx
93 # Solve
94 Js = Function(V)
95 solve(B == L,Js,bc)
96
97 return Js
98
99

100
101 """
102 A simple implementation of the H1 inner product , used to shorten
103 code length.
104 """
105 def H1IP(u,v):
106 return assemble ((u*v + inner(grad(u),grad(v)))*dx)
107
108
109 """
110 Computes a list of arrays , giving a correspondance between nodes
111 and cells in the mesh. nodecells[k] will be an array of cell -id’s
112 for node ’k’.
113
114 Input:
115 Mesh ’mesh’ mesh on which the problem is solved
116
117 Output:
118 List ’nodecells ’ node -to-cell connectivity
119 """
120 def node2cell(mesh):
121 N = mesh.num_vertices ()
122 C = mesh.cells ()
123 CN = len(C)
124 nodecells = list ([] for k in xrange(N))
125 for k in xrange(CN):
126 c = C[k]
127 nodecells[c[0]]. append(k)
128 nodecells[c[1]]. append(k)
129 nodecells[c[2]]. append(k)
130
131 return nodecells
132
133
134
135 """
136 Computes an array containing the L1 -norm of the FEM basis
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137 functions.
138
139 Input:
140 Mesh ’mesh’ mesh on which the problem is solved
141
142 Output:
143 List ’A’ list of L1-norms , in order of nodes in mesh
144 """
145 def BasisL1Norm(mesh):
146 # get node -cell connectivity
147 nodecells = node2cell(mesh)
148 V = FunctionSpace(mesh ,’CG’ ,1)
149 N = mesh.num_vertices ()
150 A = np.zeros(N) # for storing the L1 -norms
151 v_array = np.zeros(N)
152 v = Function(V)
153 for k in xrange(N):
154 # get cells connected to node ’k’ and the ’k’th basis
155 # function
156 nc = nodecells[k]
157 v_array[k] = 1.0
158 v.vector ()[:] = v_array
159 # get domain for cells connected to node ’k’ for the
160 # support of the ’k’th basis function
161 domain = CellFunction("uint",mesh)
162 domain.set_all (0)
163 for j in xrange(len(nc)):
164 domain.set_value(nc[j],1)
165 # only integrate on the support of basis function for
166 # efficiency
167 dx = Measure("dx")[ domain]
168 A[k] = assemble(v*dx(1))
169 v_array[k] = 0.0
170
171 return A
172
173
174
175 """
176 Simply makes a version of arctan2 that returns in range [0,2*pi]
177 instead of [-pi ,pi].
178 """
179 def arctan3(y,x):
180 a = np.arctan2(y,x)
181 N = np.size(a)
182 if N == 1:
183 if a < 0:
184 a += 2*pi
185 else:
186 for i in xrange(N):
187 if a[i] < 0:
188 a[i] += 2*pi
189
190 return a
191
192
193
194 """
195 Constructs expression for ’g’ giving a scaled and translated
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196 version of either a sine or cosine , i.e.
197 g = cos (2*pi/(theta2 -theta1 )*N*(theta -theta1)), and truncated
198 such that it is zero outside [theta1 ,theta2 ].
199
200 Input:
201 Boolean ’iscos’ True for cosine , False for sine
202 Constant ’N’ number of periods
203 Constants ’theta1 ’,’theta2 ’ determines the range
204 [theta1 ,theta2], default is
205 [0,2*pi]
206
207 Output:
208 Expression ’g’
209 """
210 def g_exp(iscos ,N,theta1 = 0.0, theta2 = 2*pi):
211 class g(Expression ):
212 def eval(self , values , x):
213 theta = arctan3(x[1],x[0])
214 if theta < theta1 or theta > theta2:
215 values [0] = 0
216 elif iscos == True:
217 values [0] = np.cos (2*pi/(theta2 -theta1 )*N* \
218 (theta -theta1 ))
219 else:
220 values [0] = np.sin (2*pi/(theta2 -theta1 )*N* \
221 (theta -theta1 ))
222
223 return g()
224
225
226
227 """
228 Function that thresholds the boundary at a range [theta1 ,theta2],
229 default is [0,2*pi]. Only works for unit circle domain.
230
231 Input:
232 Mesh ’mesh’ mesh on which the problem is solved
233 Constants ’theta1 ’,’theta2 ’ default values are 0.0 and 2*pi
234
235 Output:
236 Function ’Tg’ threshold function
237 """
238 def ThresholdFunction(mesh ,theta1 = 0.0, theta2 = 2*pi):
239 V = FunctionSpace(mesh ,’CG’ ,1)
240 Tg = Function(V)
241 N = mesh.num_vertices ()
242 coords = mesh.coordinates ()
243 Tg_array = np.zeros(N)
244 for k in xrange(N):
245 c = coords[k]
246 # check if on boundary
247 if abs(c[0]**2+c[1]**2 -1.0) < 1E-5:
248 a = arctan3(c[1],c[0])
249 if a >= theta1 and a <= theta2:
250 Tg_array[k] = 1.0
251
252 Tg.vector ()[:] = Tg_array
253 return Tg
254
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255
256 """
257 Obtains the boundary for the unit circle case , and orders it in
258 terms of the angle.
259
260 Input:
261 Mesh ’mesh’ mesh on which the problem is solved
262 Function ’u’ function from which the boundary is extracted
263
264 Output:
265 List ’ang’ angular values
266 List ’val’ amplitude
267 """
268 def GetBoundary(mesh ,u):
269 u_array = u.vector (). array ()
270 coords = mesh.coordinates ()
271 angles = arctan3(coords [:,1], coords [:,0])
272 T = []
273 N = len(angles)
274 for i in xrange(N):
275 c = coords[i]
276 # check if on boundary
277 if abs(c[0]**2+c[1]**2 -1.0) < 1E-5:
278 T.append (( angles[i],u_array[i]))
279
280 dtype = [(’angles ’,’double ’),(’uval’,’double ’)]
281 A = np.array(T,dtype)
282 A = np.sort(A,order=’angles ’) # order points correctly
283 ang = A.getfield(’double ’ ,0)
284 val = A.getfield(’double ’ ,8)
285
286 return ang ,val
287
288
289 """
290 Simulate data for the EIT -problem using cosines and sines on the
291 boundary , on a mesh for the unit disk , and with given noise
292 level.
293
294 To avoid inverse crimes the forward problem is solved on a very
295 fine mesh , and then interpolated onto the given coarser mesh.
296
297 For ’k’ datasets of cosines/sines use an array ’cos_array ’/
298 ’sin_array ’ of length ’k’, containing the number of periods for
299 the specific datasets.
300
301 ’sigma ’, exact data , noisy data , noiselvl , ’cos_array ’,
302 ’sin_array ’, ’theta1 ’, and ’theta2 ’ will be saved to the file
303 given by ’filename ’. Use the library ’shelve ’ to retrieve it.
304
305 The functions will be saved as arrays.
306
307 Input:
308 Expression ’sigma ’ the exact conductivity
309 Mesh ’mesh’ coarse mesh
310 Mesh ’fine_mesh ’ fine mesh used to avoid
311 inverse crime
312 Constant ’noiselvl ’ the noise level for the
313 additive white noise , in
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314 terms of L^infty
315 List of constants ’cos_array ’ Constants n that determines
316 the periods of the cosine
317 Neumann -data
318 List of constants ’sin_array ’ Constants n that determines
319 the periods of the sine
320 Neumann -data
321 String ’filename ’ name for the file where the
322 data is stored
323 Constants ’theta1 ’,’theta2 ’ scale and translate the
324 Neumann -data such that it is
325 supported in [theta1 ,theta2],
326 default is [0,2*pi])
327 """
328 def SimulateEITData(sigma ,mesh ,fine_mesh ,noiselvl ,cos_array ,\
329 sin_array ,filename ,theta1 =0.0, theta2 =2*pi):
330 # allow interpolation between different meshes
331 parameters["allow_extrapolation"] = True
332 V = FunctionSpace(mesh ,’CG’ ,1)
333 Vfine = FunctionSpace(fine_mesh ,’CG’ ,1)
334 sigmafine = project(sigma ,Vfine)
335 sigmafun = project(sigma ,V)
336 NumVert = mesh.num_vertices ()
337 u_exact_array = []
338 u_noise_array = []
339 maxval = 0
340 for j in xrange (2):
341 if j == 0:
342 iscos = True
343 n_array = cos_array
344 else:
345 iscos = False
346 n_array = sin_array
347 k = len(n_array)
348 for i in xrange(k):
349 # solve and save exact data
350 g = g_exp(iscos ,n_array[i],theta1 ,theta2)
351 u_fine = FSolver(fine_mesh ,sigmafine ,g)
352 u = Function(V)
353 # down sample to coarse mesh
354 u = interpolate(u_fine ,V)
355 u_array = u.vector (). array ()
356 u_exact_array.append(u_array)
357 # get max value of boundary
358 ang ,val = GetBoundary(mesh ,u)
359 maxval = max([abs(val).max(),maxval ])
360
361 # now adding noise according to
362 # noiselvl*max_k max_x u(on bdry)
363 for i in xrange(len(u_exact_array )):
364 noise = noiselvl*maxval*np.random.normal(0,1,NumVert)
365 u_noise_array.append(u_exact_array[i] + noise)
366
367 # save it all to a file
368 data = shelve.open(filename)
369 data["noiselvl"] = noiselvl
370 data["sigma"] = sigmafun.vector (). array ()
371 data["u_exact_array"] = u_exact_array
372 data["u_noise_array"] = u_noise_array
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373 data["cos_array"] = cos_array
374 data["sin_array"] = sin_array
375 data["theta1"] = theta1
376 data["theta2"] = theta2
377 data.close ()

D.2 Sparsity Solver
This section will contain the source code of the file EITSparsitySolver.py
that contains the implementation of the sparsity solver.

1 """
2 Source code for the sparsity solver for EIT
3 """
4
5 from dolfin import *
6 import numpy as np
7 from SharedEITFunctions import *
8
9

10 """
11 Computes Tikhonov functional Psi(delta_sigma) using the finite
12 element basis.
13
14 Input:
15 Mesh ’mesh’ mesh on which the problem is
16 solved
17 List of Constant ’alpha_array ’ reg. parameters
18 Function ’sigma0 ’ background
19 Function ’delta_sigma ’ inclusion
20 List of expressions ’g_array ’ Neumann -datasets
21 List of data ’phi_array ’ Dirichlet -datasets
22 List of functions ’F_array ’ used to store forward solution
23 Function ’Tg’ threshold function for partial
24 data , default = Constant (1.0)
25 List of constants ’w_array ’ optional weights for
26 discrepancy , default = 1
27
28 Output:
29 Double ’Psi’ evaluation of the Tikhonov
30 functional
31 """
32 def PsiEval(mesh ,alpha_array ,sigma0 ,delta_sigma ,g_array ,\
33 phi_array ,F_array ,Tg = Constant (1.0), w_array=None):
34 print "Evaluating Tikhonov functional"
35 N = len(g_array)
36 V = sigma0.function_space ()
37 sigma = Function(V)
38 sigma.vector ()[:] = sigma0.vector (). array() + \
39 delta_sigma.vector (). array()
40 # Set default values of weights if not given
41 if w_array == None:
42 w_array = np.ones(N)
43
44 # Find discrepancy
45 J = 0
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46 for k in xrange(N):
47 # Solve forward problem
48 u = FSolver(mesh ,sigma ,g_array[k])
49 F_array[k] = u
50 # Evaluate part of discrepancy
51 udiff = Function(V)
52 udiff.vector ()[:] = u.vector (). array () - \
53 phi_array[k]. vector (). array()
54 J = J + w_array[k]* assemble(udiff*udiff*Tg*ds)
55 J = 0.5*J
56
57 # Compute l1 penalty -term
58 penalty = abs(alpha_array*delta_sigma.vector (). array ()). sum()
59
60 return J + penalty
61
62
63
64
65 """
66 Soft shrinkage operator.
67
68 Input:
69 Function ’u’
70 List of constants ’beta_array ’ parameters corresponding to each
71 node
72
73 Output:
74 Function ’v’ the soft shrinkage of ’u’
75 """
76 def SoftShrinkage(u,beta_array ):
77 V = u.function_space ()
78 v = Function(V)
79 # makes a copy of the array from u (not the pointer to the
80 # actual array in u)
81 v_array = u.vector (). array ()
82 # perform soft shrinkage at nodes
83 for k in xrange(len(v_array )):
84 vk = v_array[k]
85 v_array[k] = np.sign(vk)*np.max([abs(vk) - \
86 beta_array[k],0])
87 v.vector ()[:] = v_array
88
89 return v
90
91
92
93 """
94 Computes step size for iteration , and returns the soft shrinkage
95 for that step.
96
97 Input:
98 Function ’sigma0 ’ background
99 Mesh ’mesh’ mesh on which the problem

100 is solved
101 Function ’delta_sigma ’ inclusion
102 Function ’delta_sigma_prev ’ inclusion from previous
103 iterate
104 Function ’Js’ sobolev gradient of J
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105 Function ’Js_prev ’ sobolev gradient of J
106 from previous iterate
107 List of functions ’psi_array ’ evaluations of Psi(sigma)
108 up to current iteration
109 List of functions ’g_array ’ Neumann -datasets
110 List of functions ’phi_array ’ Dirichlet -datasets
111 List of functions ’F_array ’ used to store forward
112 solution
113 List ’param’ parameters [s_min ,s_max ,
114 M,tau ,q,alpha_array ,
115 s_stop ,I_max ,beta_array]
116 in that exact order
117 Function ’Tg’ threshold function for
118 partial data , default =
119 Constant (1.0)
120 List of constants ’w_array ’ optional weights for
121 discrepancy , default = 1
122
123 Output:
124 Double ’s’ step size
125 Function ’soft_step ’ next iterate
126 """
127 def StepSize(sigma0 ,mesh ,delta_sigma ,delta_sigma_prev ,Js ,\
128 Js_prev ,psi_array ,g_array ,phi_array ,F_array ,param ,\
129 Tg=Constant (1.0), w_array=None):
130 # unpacking parameters
131 s_min = param [0]
132 s_max = param [1]
133 M = param [2]
134 tau = param [3]
135 q = param [4]
136 alpha_array = param [5]
137 beta_array = param [8]
138 s_stop = param [6]
139 V = sigma0.function_space ()
140
141 # we want to look back M steps , but initially we only have N
142 N = len(psi_array)
143 if N < M:
144 M = N
145
146 # initialize step , if N = 1 then we are at first iteration
147 if N == 1:
148 # at first iteration we have no step size estimate
149 s = s_max
150 else:
151 diff_sigma = Function(V)
152 diff_Js = Function(V)
153 diff_sigma.vector ()[:] = delta_sigma.vector (). array () - \
154 delta_sigma_prev.vector (). array ()
155 diff_Js.vector ()[:] = Js.vector (). array() - \
156 Js_prev.vector (). array()
157 IPsigmaJs = H1IP(diff_sigma ,diff_Js)
158 IPsigma2 = H1IP(diff_sigma ,diff_sigma)
159 # avoid division with zero in special cases
160 if IPsigma2 == 0.0:
161 s = s_min
162 elif IPsigmaJs == 0.0:
163 s = s_max
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164 else:
165 s = H1IP(diff_sigma ,diff_sigma )/ \
166 H1IP(diff_sigma ,diff_Js)
167 # make initial step size lie in [s_min , s_max]
168 s = np.min([np.max([s_min , s]), s_max])
169
170 # check weak monotonicity
171 accept = False
172 psi_max = np.array(psi_array[N-M:N]). max()
173 delta_step = Function(V)
174 while accept == False:
175 delta_step.vector ()[:] = delta_sigma.vector (). array () - \
176 s*Js.vector (). array ()
177 soft_step = SoftShrinkage(delta_step ,s*beta_array)
178 diff = Function(V)
179 diff.vector ()[:] = soft_step.vector (). array () - \
180 delta_sigma.vector (). array()
181 upperbound = psi_max - 0.5* tau/s*H1IP(diff ,diff)
182 psi_step = PsiEval(mesh ,alpha_array ,sigma0 ,soft_step ,\
183 g_array ,phi_array ,F_array ,Tg ,w_array)
184 print "step size: ", s
185 # if weak monotonicity holds we accept the step
186 if psi_step <= upperbound or s <= s_stop:
187 accept = True
188 # otherwise we decrease s by factor q
189 else:
190 print "Reducing step size"
191 s = s/q
192 # append psi evaluated at next step
193 print "Psi: ", psi_step
194 psi_array.append(psi_step)
195 return s, soft_step
196
197
198
199 """
200 Iterative solver that minimizes the Tikhonov functional
201 Psi(delta_sigma), and produces a candidate for the inverse
202 EIT -problem for the continuum model:
203
204 -div(sigma*grad(u)) = 0
205 sigma*du/dn = g
206 int u ds = 0
207
208 The method supports multiple datasets (g_k ,phi_k), where g_k is
209 the Neumann -data and phi is the measured Dirichlet -data
210 corresponding to trace(u)+ noise.
211
212 The FEM elements used are Lagrange elements of degree 1.
213
214 If ’alpha_array ’ has length 1, then it is extended to an array of
215 correct length with this value at all entries.
216
217 Input:
218 Function ’sigma0 ’ background
219 Mesh ’mesh’ mesh on which the problem is
220 solved
221 List of functions ’g_array ’ Neumann -datasets
222 List of functions ’phi_array ’ Dirichlet -datasets
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223 List ’param’ parameters [s_min ,s_max ,M,tau ,q,
224 alpha_array ,s_stop ,I_max], in
225 this exact order
226 s_min ,s_max : bounds for initial
227 step sizes
228 M,tau : parameters for
229 weak monotonocity
230 q : factor for reducing
231 step sizes
232 alpha_array : reg. parameters
233 s_stop : stopping criteria
234 for step sizes
235 I_max : maximum no. of
236 iterations
237 Function ’Tg’ threshold function for partial
238 data , default = Constant (1.0)
239 List of constants ’w_array ’ optional weights for discrepancy ,
240 default = 1
241
242 Output:
243 Function ’sigma ’ final solution
244 List of double ’psi_array ’ evaluations for Psi for each
245 iteration
246 List of double ’s_array ’ step sizes for each iteration
247 List of arrays ’sigma_array ’ solution in each iteration
248 """
249 def SparsitySolver(sigma0 ,mesh ,g_array ,phi_array ,param ,\
250 Tg = Constant (1.0), w_array = None):
251 # initialize
252 K = len(g_array)
253 N = mesh.num_vertices ()
254 # Set default values of weights if not given
255 if w_array == None:
256 w_array = np.ones(K)
257 stop = False
258 alpha_array = param [5]
259 # Make sure that alpha_array has correct length
260 if np.size(alpha_array) == 1:
261 alpha_array = alpha_array*np.ones(N)
262 param [5] = alpha_array
263 # make beta_array , given by alpha_array weighted by FEM
264 # basis L1-norm
265 beta_array = alpha_array/BasisL1Norm(mesh)
266 param.append(beta_array)
267 s_stop = param [6]
268 I_max = param [7]
269 V = sigma0.function_space ()
270 sigma = Function(V)
271 delta_sigma = Function(V)
272 delta_sigma_prev = Function(V)
273 Js = Function(V)
274 Js_prev = Function(V)
275 psi_array = []
276 s_array = []
277 sigma0array = sigma0.vector (). array ()
278 sigma_array = []
279 # make list for storing forward solution at each iteration
280 F_array = list ([] for k in xrange(K))
281 # evaluate Psi at start point
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282 psi0 = PsiEval(mesh ,alpha_array ,sigma0 ,delta_sigma ,g_array ,\
283 phi_array ,F_array ,Tg ,w_array)
284 psi_array.append(psi0)
285 i = 0
286 # begin iterating
287 while stop == False:
288 i = i+1
289 print "Iteration: ", i
290 sigma.vector ()[:] = sigma0array + \
291 delta_sigma.vector (). array ()
292 sigma_array.append(sigma.vector (). array ())
293 # computing discrepancy gradient
294 Jprime = Function(V)
295 for k in xrange(K):
296 Jprime = Jprime + w_array[k]* Jsolver(mesh ,sigma ,\
297 g_array[k],phi_array[k],\
298 F_array[k],Tg)
299 # computing Sobolev gradient
300 Js_prev.vector ()[:] = Js.vector (). array()
301 Js = Jsobolev(mesh ,Jprime)
302 # compute step size and next step
303 s, soft_step = StepSize(sigma0 ,mesh ,delta_sigma ,\
304 delta_sigma_prev ,Js,Js_prev ,\
305 psi_array ,g_array ,phi_array ,\
306 F_array ,param ,Tg,w_array)
307 s_array.append(s)
308 delta_sigma_prev.vector ()[:] = delta_sigma.vector (). \
309 array()
310 delta_sigma.vector ()[:] = soft_step.vector (). array()
311 # check stopping conditions
312 if i == I_max or s <= s_stop:
313 stop = True
314 # compute final sigma
315 sigma.vector ()[:] = sigma0array + \
316 delta_sigma.vector (). array ()
317 sigma_array.append(sigma.vector (). array ())
318 return sigma , psi_array , s_array , sigma_array

D.3 Total Variation Solver
This section will contain the source code of the file EITTVSolver.py that
contains the implementation of the TV solver.

1 """
2 Source code for the total variation solver for EIT
3 """
4
5 from dolfin import *
6 import numpy as np
7 from SharedEITFunctions import *
8
9 """

10 Computes Tikhonov functional Psi(sigma) using the finite element
11 basis.
12
13 Input:
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14 Mesh ’mesh’ mesh on which the problem is
15 solved
16 Constants ’beta ,c’ reg. parameters
17 Function ’sigma0 ’ background
18 Function ’delta_sigma ’ inclusion
19 List of expressions ’g_array ’ Neumann -datasets
20 List of data ’phi_array ’ Dirichlet -datasets
21 List of functions ’F_array ’ used to store forward solution
22 Function ’Tg’ threshold function for partial
23 data , default = Constant (1.0)
24 List of constants ’w_array ’ optional weights for
25 discrepancy , default = 1
26
27 Output:
28 Double ’Psi’ evaluation of the Tikhonov
29 functional
30 """
31 def PsiEval(mesh ,beta ,c,sigma0 ,delta_sigma ,g_array ,phi_array ,\
32 F_array ,Tg = Constant (1.0), w_array=None):
33 print "Evaluating Tikhonov functional"
34 N = len(g_array)
35 V = sigma0.function_space ()
36 sigma = Function(V)
37 sigma.vector ()[:] = sigma0.vector (). array() + \
38 delta_sigma.vector (). array()
39 # Set default values of weights if not given
40 if w_array == None:
41 w_array = np.ones(N)
42
43 # Find discrepancy
44 J = 0
45 for k in xrange(N):
46 # Solve forward problem
47 u = FSolver(mesh ,sigma ,g_array[k])
48 F_array[k] = u
49 # Evaluate part of discrepancy
50 udiff = Function(V)
51 udiff.vector ()[:] = u.vector (). array() - \
52 phi_array[k]. vector (). array()
53 J = J + w_array[k]* assemble(udiff*udiff*Tg*ds)
54 J = 0.5*J
55
56 # Compute TV penalty -term
57 penalty = beta*assemble(sqrt(inner(grad(delta_sigma), \
58 grad(delta_sigma ))+ Constant(c))*dx)
59
60 return J + penalty
61
62
63
64 """
65 Computes the TV step given a parameter ’beta’ or s*beta as in the
66 algorithm.
67
68 Input:
69 Function ’delta_sigma ’ current iterate
70 Function ’gamma ’ delta_sigma -s_i*nabla_s J(sigma_i)
71 Constants ’beta ,c’ reg. parameters
72
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73 Output:
74 Function ’TV_step ’ the new TV step
75 """
76 def TVStep(delta_sigma ,gamma ,beta ,c):
77 V = delta_sigma.function_space ()
78 def bdry(x, on_boundary ):
79 return on_boundary
80
81 bc = DirichletBC(V,Constant (0.0) , bdry)
82 v = TestFunction(V)
83 u = TrialFunction(V)
84 # make variables to shorten code
85 f = inner(grad(delta_sigma),grad(delta_sigma ))+ Constant(c)
86 f1 = Constant(beta)/sqrt(f)
87 f2 = f1/f
88 # setting up the forms
89 B = u*v*dx + inner(( Constant (1)+f1)*grad(u),grad(v))*dx - \
90 f2*inner(grad(delta_sigma),grad(u))* \
91 inner(grad(delta_sigma),grad(v))*dx
92 L = gamma*v*dx + inner((grad(gamma)-f2* \
93 inner(grad(delta_sigma),grad(delta_sigma ))* \
94 grad(delta_sigma )),grad(v))*dx
95 # solving
96 TV_step = Function(V)
97 solve(B == L,TV_step ,bc)
98
99 return TV_step

100
101
102
103
104
105
106 """
107 Computes step size for iteration , and returns the next TV step.
108
109 Input:
110 Function ’sigma0 ’ background
111 Mesh ’mesh’ mesh on which the problem
112 is solved
113 Function ’delta_sigma ’ inclusion
114 Function ’delta_sigma_prev ’ inclusion from previous
115 iterate
116 Function ’Js’ sobolev gradient of J
117 Function ’Js_prev ’ sobolev gradient of J
118 from previous iterate
119 List of functions ’psi_array ’ evaluations of Psi(sigma)
120 up to current iteration
121 List of functions ’g_array ’ Neumann -datasets
122 List of functions ’phi_array ’ Dirichlet -datasets
123 List of functions ’F_array ’ used to store forward
124 solution
125 List ’param’ parameters [s_min ,s_max ,
126 M,tau ,q,beta_array ,
127 s_stop ,I_max ,c], in that
128 exact order
129 Function ’Tg’ threshold function for
130 partial data ,
131 default = Constant (1.0)
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132 List of constants ’w_array ’ optional weights for
133 discrepancy , default = 1
134
135 Output:
136 Double ’s’ step size
137 Function ’TV_step ’ next iterate
138 """
139 def StepSize(sigma0 ,mesh ,delta_sigma ,delta_sigma_prev ,Js ,\
140 Js_prev ,psi_array ,g_array ,phi_array ,F_array ,param ,\
141 Tg=Constant (1.0), w_array=None):
142 # unpacking parameters
143 s_min = param [0]
144 s_max = param [1]
145 M = param [2]
146 tau = param [3]
147 q = param [4]
148 beta = param [5]
149 c = param [8]
150 s_stop = param [6]
151 V = sigma0.function_space ()
152
153 # we want to look back M steps , but initially we only have N
154 N = len(psi_array)
155 if N < M:
156 M = N
157
158 # initialize step , if N = 1 then we are at first iteration
159 if N == 1:
160 # at first iteration we have no step size estimate
161 s = s_max
162 else:
163 diff_sigma = Function(V)
164 diff_Js = Function(V)
165 diff_sigma.vector ()[:] = delta_sigma.vector (). array () - \
166 delta_sigma_prev.vector (). array ()
167 diff_Js.vector ()[:] = Js.vector (). array() - \
168 Js_prev.vector (). array()
169 IPsigmaJs = H1IP(diff_sigma ,diff_Js)
170 IPsigma2 = H1IP(diff_sigma ,diff_sigma)
171 # avoid division with zero in special cases
172 if IPsigma2 == 0.0:
173 s = s_min
174 elif IPsigmaJs == 0.0:
175 s = s_max
176 else:
177 s = H1IP(diff_sigma ,diff_sigma )/ \
178 H1IP(diff_sigma ,diff_Js)
179 # make initial step size lie in [s_min , s_max]
180 s = np.min([np.max([s_min , s]), s_max])
181
182 # check weak monotonicity
183 accept = False
184 psi_max = np.array(psi_array[N-M:N]). max()
185 delta_step = Function(V)
186 while accept == False:
187 delta_step.vector ()[:] = delta_sigma.vector (). array () - \
188 s*Js.vector (). array ()
189 TV_step = TVStep(delta_sigma ,delta_step ,s*beta ,c)
190 diff = Function(V)
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191 diff.vector ()[:] = TV_step.vector (). array () - \
192 delta_sigma.vector (). array()
193 upperbound = psi_max - 0.5* tau/s*H1IP(diff ,diff)
194 psi_step = PsiEval(mesh ,beta ,c,sigma0 ,TV_step ,g_array ,\
195 phi_array ,F_array ,Tg ,w_array)
196 print "step size: ", s
197 # if weak monotonicity holds we accept the step
198 if psi_step <= upperbound or s <= s_stop:
199 accept = True
200 # otherwise we decrease s by factor q
201 else:
202 print "Reducing step size"
203 s = s/q
204 # append psi evaluated at next step
205 print "Psi: ", psi_step
206 psi_array.append(psi_step)
207 return s, TV_step
208
209
210
211
212 """
213 Iterative solver that minimizes the Tikhonov functional
214 Psi(sigma), and produces a candidate for the inverse EIT -problem
215 for the continuum model:
216
217 -div(sigma*grad(u)) = 0
218 sigma*du/dn = g
219 int u ds = 0
220
221 The method supports multiple datasets (g_k ,phi_k), where g_k is
222 the Neumann -data and phi is the measured Dirichlet -data
223 corresponding to trace(u)+ noise.
224
225 The FEM elements used are Lagrange elements of degree 1.
226
227 Input:
228 Function ’sigma0 ’ background
229 Mesh ’mesh’ mesh on which the problem is
230 solved
231 List of functions ’g_array ’ Neumann -datasets
232 List of functions ’phi_array ’ Dirichlet -datasets
233 List ’param’ parameters [s_min ,s_max ,M,tau ,q,
234 beta_array ,s_stop ,I_max ,c], in
235 this exact order
236 s_min ,s_max : bounds for initial
237 step sizes
238 M,tau : parameters for weak
239 monotonocity
240 q : factor for reducing
241 step sizes
242 beta_array ,c : reg. parameters
243 s_stop : stopping criteria
244 for step sizes
245 I_max : maximum no. of
246 iterations
247 Function ’Tg’ threshold function for partial
248 data , default = Constant (1.0)
249 List of constants ’w_array ’ optional weights for discrepancy ,
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250 default = 1
251
252 Output:
253 Function ’sigma ’ final solution
254 List of double ’psi_array ’ evaluations for Psi for each
255 iteration
256 List of double ’s_array ’ step sizes for each iteration
257 List of arrays ’sigma_array ’ solution in each iteration
258 """
259 def TVSolver(sigma0 ,mesh ,g_array ,phi_array ,param ,\
260 Tg = Constant (1.0), w_array = None):
261 # initialize
262 K = len(g_array)
263 # Set default values of weights if not given
264 if w_array == None:
265 w_array = np.ones(K)
266 stop = False
267 beta = param [5]
268 c = param [8]
269 s_stop = param [6]
270 I_max = param [7]
271 V = sigma0.function_space ()
272 sigma = Function(V)
273 delta_sigma = Function(V)
274 delta_sigma_prev = Function(V)
275 Js = Function(V)
276 Js_prev = Function(V)
277 psi_array = []
278 s_array = []
279 sigma0array = sigma0.vector (). array ()
280 sigma_array = []
281 # make list for storing forward solution at each iteration
282 F_array = list ([] for k in xrange(K))
283 psi0 = PsiEval(mesh ,beta ,c,sigma0 ,delta_sigma ,g_array ,\
284 phi_array ,F_array ,Tg ,w_array)
285 psi_array.append(psi0)
286 i = 0
287 # begin iterating
288 while stop == False:
289 i = i+1
290 print "Iteration: ", i
291 sigma.vector ()[:] = sigma0array + \
292 delta_sigma.vector (). array()
293 sigma_array.append(sigma.vector (). array ())
294 # computing discrepancy gradient
295 Jprime = Function(V)
296 for k in xrange(K):
297 Jprime = Jprime + w_array[k]* Jsolver(mesh ,sigma ,\
298 g_array[k],phi_array[k],\
299 F_array[k],Tg)
300 # computing Sobolev gradient
301 Js_prev.vector ()[:] = Js.vector (). array()
302 Js = Jsobolev(mesh ,Jprime)
303 # compute step size and next step
304 s, TV_step = StepSize(sigma0 ,mesh ,delta_sigma ,\
305 delta_sigma_prev ,Js,Js_prev ,\
306 psi_array ,g_array ,phi_array ,\
307 F_array ,param ,Tg,w_array)
308 s_array.append(s)
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309 delta_sigma_prev.vector ()[:] = delta_sigma.vector (). \
310 array()
311 delta_sigma.vector ()[:] = TV_step.vector (). array()
312 # check stopping conditions
313 if i == I_max or s <= s_stop:
314 stop = True
315 # compute final sigma
316 sigma.vector ()[:] = sigma0array + \
317 delta_sigma.vector (). array ()
318 sigma_array.append(sigma.vector (). array ())
319 return sigma , psi_array , s_array , sigma_array

D.4 Sample Code
This section contains a small sample of code that shows how to use the
above implementations to simulate data, load the data, run the sparsity
solver, and finally visualize the result.

1 """
2 Test the implementation for inverse EIT
3 """
4
5 from dolfin import *
6 import numpy as np
7 import matplotlib.pyplot as py
8 import shelve # used to easily load/save stuff from/to files
9 import EITSparsitySolver as eit

10
11
12 # parameters
13 fine_mesh = Mesh("../ mesh/finemesh.xml")
14 mesh = Mesh("../ mesh/mediummesh.xml")
15 V = FunctionSpace(mesh ,’CG’ ,1)
16 datafile = "data"
17 resultfile = "result"
18 M = 5
19 q = 2
20 s_stop = 1E-3
21 s_min = 1.0
22 s_max = 1000.0
23 I_max = 200
24 tau = 1E-5
25 alpha = 2E-5
26 param = [s_min ,s_max ,M,tau ,q,alpha ,s_stop ,I_max]
27 theta1 = 0.0
28 theta2 = 2*pi
29 Tg = eit.ThresholdFunction(mesh ,theta1 ,theta2)
30 w_array = None # using default weights
31
32 # simulate data
33 r = 0.4
34 cx = -0.3
35 cy = 0.3
36 C = 5
37 class sigmafun(Expression ):
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38 def eval(self , values , x):
39 if np.sqrt((x[0]-cx )**2+(x[1]-cy )**2) < r:
40 values [0] = 1+C
41 else:
42 values [0] = 1
43
44 sigma = sigmafun ()
45 cos_array = [1,2,3,4,5]
46 sin_array = [1,2,3,4,5]
47 noiselvl = 1E-3
48
49 eit.SimulateEITData(sigma ,mesh ,fine_mesh ,noiselvl ,cos_array ,\
50 sin_array ,datafile)
51
52 # load data
53 data = shelve.open(datafile)
54 sigma = Function(V)
55 sigma.vector ()[:] = data["sigma"]
56 u_exact_array = data["u_exact_array"]
57 u_noise_array = data["u_noise_array"]
58 cos_array = data["cos_array"]
59 sin_array = data["sin_array"]
60 data.close ()
61 g_array = []
62 phi_array = []
63 for j in range (0,2):
64 if j == 0:
65 n_array = cos_array
66 iscos = True
67 p = 0
68 else:
69 n_array = sin_array
70 iscos = False
71 p = len(cos_array)
72 k = len(n_array)
73 for i in range(0,k):
74 phi = Function(V)
75 phi.vector ()[:] = u_noise_array[i+p]
76 g = eit.g_exp(iscos ,n_array[i],theta1 ,theta2)
77 phi_array.append(phi)
78 g_array.append(g)
79 sigma0 = interpolate(Constant (1.0),V)
80
81 # attempt reconstuction
82 # we do not want 100’s of "solving problem" logs
83 set_log_active(False)
84 sigma_approx ,psi_array ,s_array ,sigma_array = \
85 eit.SparsitySolver(sigma0 ,mesh ,g_array ,phi_array ,param ,Tg ,\
86 w_array)
87
88 # visualize result
89 plot(sigma_approx ,warpscalar=False ,title=’sigma approx ’)
90 plot(sigma ,warpscalar=False ,title=’exact sigma ’)
91 interactive ()
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